In this focus article, we provide a scrutinizing analysis of transmission electron microscopy (TEM) and dynamic light scattering (DLS) as the two common methods to study the sizes of nanoparticles with focus on the application in pharmaceutics and drug delivery. Control over the size and shape of nanoparticles is one of the key factors for many biomedical systems. Particle size will substantially affect their permeation through biological membranes. For example, an enhanced permeation and retention effect requires a very narrow range of sizes of nanoparticles (50-200 nm) and even a minor deviation from these values will substantially affect the delivery of drug nanocarriers to the tumour. However, amazingly a great number of research papers in pharmaceutics and drug delivery report a striking difference in nanoparticle size measured by the two most popular experimental techniques (TEM and DLS). In some cases, this difference was reported to be 200-300%, raising the question of which size measurement result is more trustworthy. In this focus article, we primarily focus on the physical aspects that are responsible for the routinely observed mismatch between TEM and DLS results. Some of these factors such as concentration and angle dependencies are commonly underestimated and misinterpreted. We convincingly show that correctly used experimental procedures and a thorough analysis of results generated using both methods can eliminate the DLS and TEM data mismatch completely or will make the results much closer to each other. Also, we provide a clear roadmap for drug delivery and pharmaceutical researchers to conduct reliable DLS measurements.
Hydrophobic blocks of amphiphilic block copolymers often form glassy micellar cores at room temperature with a rigid structure that limits their applications as nanocapsules for targeted delivery. Nevertheless, we prepared and analyzed core/shell micelles with a soft core, formed by a self-assembled block copolymer consisting of a hydrophobic block and a polycation block, poly(lauryl acrylate)-block-poly(trimethyl-aminoethyl acrylate) (PLA-QPDMAEA), in aqueous solution. By light and small-angle neutron scattering, by transmission electron microscopy and by fluorescence spectroscopy, we showed that these core/shell micelles are spherical and cylindrical with a fluid-like PLA core and a positively charged outer shell and that they can encapsulate and release hydrophobic solutes. Moreover, after mixing these PLA-QPDMAEA core/shell micelles with another diblock copolymer, consisting of a hydrophilic block and a polyanion block, namely poly(ethylene oxide)-block-poly(methacrylic acid) (PEO-PMAA), we observed the formation of novel vesicle-like multicompartment structures containing both soft hydrophobic and interpolyelectrolyte (IPEC) layers. By combining small-angle neutron scattering with self-consistent field modeling, we confirmed the formation of these complex vesicle-like structures with a swollen PEO core, an IPEC inner layer, a PLA soft layer, an IPEC outer layer and a loose PEO corona. Thus, these multicompartment micelles with fluid and IPEC layers and a hydrophilic corona may be used as nanocapsules with several tunable properties, including the ability to control the thickness of each layer, the charge of the IPEC layers and the stability of the micelles, to deliver both hydrophobic and multivalent solutes.
- Klíčová slova
- Block polyelectrolytes, Core/shell particles, Electrostatic coassembly, Small-angle scattering,
- Publikační typ
- časopisecké články MeSH
The use of fluorinated contrast agents in magnetic resonance imaging (MRI) facilitates improved image quality due to the negligible amount of endogenous fluorine atoms in the body. In this work, we present a comprehensive study of the influence of the amphiphilic polymer structure and composition on its applicability as contrast agents in 19F MRI. Three series of novel fluorine-containing poly(2-oxazoline) copolymers and terpolymers, hydrophilic-fluorophilic, hydrophilic-lipophilic-fluorophilic, and hydrophilic-thermoresponsive-fluorophilic, with block and gradient distributions of the fluorinated units, were synthesized. It was discovered that the CF3 in the 2-(3,3,3-trifluoropropyl)-2-oxazoline (CF3EtOx) group activated the cationic chain end, leading to faster copolymerization kinetics, whereby spontaneous monomer gradients were formed with accelerated incorporation of 2-methyl-2-oxazoline or 2-n-propyl-2-oxazoline with a gradual change to the less-nucleophilic CF3EtOx monomer. The obtained amphiphilic copolymers and terpolymers form spherical or wormlike micelles in water, which was confirmed using transmission electron microscopy (TEM), while small-angle X-ray scattering (SAXS) revealed the core-shell or core-double-shell morphologies of these nanoparticles. The core and shell sizes obey the scaling laws for starlike micelles predicted by the scaling theory. Biocompatibility studies confirm that all copolymers obtained are noncytotoxic and, at the same time, exhibit high sensitivity during in vitro 19F MRI studies. The gradient copolymers provide the best 19F MRI signal-to-noise ratio in comparison with the analogue block copolymer structures, making them most promising as 19F MRI contrast agents.
- MeSH
- difrakce rentgenového záření MeSH
- fluor * MeSH
- maloúhlový rozptyl MeSH
- micely * MeSH
- polymery MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluor * MeSH
- micely * MeSH
- polymery MeSH
The binding of plasma proteins to a drug carrier alters the circulation of nanoparticles (NPs) in the bloodstream, and, as a consequence, the anticancer efficiency of the entire nanoparticle drug delivery system. We investigate the possible interaction and the interaction mechanism of a polymeric drug delivery system based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers (pHPMA) with the most abundant proteins in human blood plasma-namely, human serum albumin (HSA), immunoglobulin G (IgG), fibrinogen (Fbg), and apolipoprotein (Apo) E4 and A1-using a combination of small-angle X-ray scattering (SAXS), analytical ultracentrifugation (AUC), and nuclear magnetic resonance (NMR). Through rigorous investigation, we present evidence of weak interactions between proteins and polymeric nanomedicine. Such interactions do not result in the formation of the protein corona and do not affect the efficiency of the drug delivery.
- Klíčová slova
- drug delivery, pHPMA, plasma proteins, polymeric nanoparticles, stealth effect,
- Publikační typ
- časopisecké články MeSH
By using methyl orange template, polypyrrole nanotubes were obtained by the oxidative polymerization of pyrrole. The nanotubes were carbonized in inert atmosphere to nitrogen-enriched carbon nanotubes. These were subsequently coated with 20 wt% of polypyrrole prepared in the absence or the presence of anionic dyes (methyl orange or Acid Blue 25). The morphology of all the samples was examined by the electron microscopies, FTIR and Raman spectroscopies. Moreover, X-ray photoelectron spectroscopy and elemental analysis were used to prove the chemical structure and the successful coating process. Electron paramagnetic resonance analysis was used to calculate the spin concentrations. Significant impact of coating method is evidenced with neat polypyrrole coating providing a two-fold capacitance increase compared to uncoated nanotubes, while coating in the presence of Acid Blue 25 decreasing it slightly. With respect to oxygen reduction reaction, coatings irreversibly transformed in the first few cycles in the presence of the products of O2 reduction, presumably hydrogen peroxide, altering the oxygen reduction mechanism. This transformation allows the tailoring of the polymeric shell, over ORR active carbonaceous core, and tuning of the catalyst selectivity and optimization of materials performance for a given application - from alkaline fuel cells to hydrogen peroxide generation.
- Klíčová slova
- Carbonization, Coating, Conductivity, Nanotubes, Oxygen reduction reaction, Polypyrrole,
- Publikační typ
- časopisecké články MeSH
Buckminsterfullerene (C60) has a large potential for biomedical applications. However, the main challenge for the realization of its biomedical application potential is to overcome its extremely low water solubility. One approach is the coformulation with biocompatible water-soluble polymers, such as poly(2-oxazoline)s (PAOx), to form water-soluble C60 nanoparticles (NPs). However, uniform and defined NPs have only been obtained via a thin film hydration method or using cyclodextrin-functionalized PAOx. Here, we report the mechanochemical preparation of defined and stable C60:PAOx NPs by the introduction of a simple alkyne group as a polymer end-group. The presence of this alkyne bond is proven to be crucial in the mechanochemical synthesis of stable, defined sub-100 nm C60:PAOx NPs, with high C60 content up to 8.9 wt %.
- Publikační typ
- časopisecké články MeSH
A water-soluble polymer cancerostatic actively targeted against cancer cells expressing a disialoganglioside antigen GD2 was designed, synthesized and characterized. A polymer conjugate of an antitumor drug doxorubicin with a N-(2-hydroxypropyl)methacrylamide-based copolymer was specifically targeted against GD2 antigen-positive tumor cells using a recombinant single chain fragment (scFv) of an anti-GD2 monoclonal antibody. The targeting protein ligand was attached to the polymer-drug conjugate either via a covalent bond between the amino groups of the protein using a traditional nonspecific aminolytic reaction with a reactive polymer precursor or via a noncovalent but highly specific interaction between bungarotoxin covalently linked to the polymer and the recombinant scFv modified with a C-terminal bungarotoxin-binding peptide. The GD2 antigen binding activity and GD2-specific cytotoxicity of the targeted noncovalent polymer-scFv complex proved to be superior to the covalent polymer-scFv conjugate.
- MeSH
- antitumorózní látky aplikace a dávkování chemie farmakologie MeSH
- bungarotoxiny chemie MeSH
- buňky 3T3 MeSH
- doxorubicin aplikace a dávkování chemie farmakologie MeSH
- gangliosidy imunologie MeSH
- jednořetězcové protilátky chemie imunologie MeSH
- kyseliny polymethakrylové chemie MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nanokonjugáty chemie MeSH
- proliferace buněk účinky léků MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antitumorózní látky MeSH
- bungarotoxiny MeSH
- doxorubicin MeSH
- Duxon MeSH Prohlížeč
- ganglioside, GD2 MeSH Prohlížeč
- gangliosidy MeSH
- jednořetězcové protilátky MeSH
- kyseliny polymethakrylové MeSH
- nanokonjugáty MeSH
An antibody mimetic known as Fab-PEG-Fab (FpF) is a stable bivalent molecule that may have some potential therapeutic advantages over IgG antibodies due to differences in their binding kinetics as determined by surface plasmon resonance. Here we describe the thermodynamic binding properties to vascular endothelial growth factor (VEGF) of the FpF antibody mimetics derived from bevacizumab and ranibizumab. Bevacizumab is an IgG antibody and ranibizumab is an antibody fragment (Fab). Both are used clinically to target VEGF to inhibit angiogenesis. FpFbeva displayed comparable binding affinity (KD) and binding thermodynamics (ΔH = -25.7 kcal mole-1 and ΔS = 14 kcal mole-1) to bevacizumab (ΔH = -25 kcal mole-1, ΔS = 13.3 kcal mole-1). FpFrani interactions with VEGF were characterised by large favourable enthalpy (ΔH = -42 kcal mole-1) and unfavourable entropy (ΔS = 31 kcal mole-1) changes compared to ranibizumab (ΔH = -18.5 kcal mole-1 and ΔS = 6.7 kcal mole-1), which being a Fab, is mono-valent. A large negative entropy change resulting in binding of bivalent FpF to homodimer VEGF might be due to the conformational change of the flexible regions of the FpF upon ligand binding. Mono-valent Fab (i.e. ranibizumab or the Fab derived from bevacizumab) displayed a larger degree of freedom (smaller unfavourable entropy) upon binding to homodimer VEGF. Our report describes the first comprehensive enthalpy and entropy compensation analysis for FpF antibody mimetics. While the FpFs displayed similar thermodynamics and binding affinity to the full IgG (i.e. bevacizumab), their enhanced protein stability, slower dissociation rate and lack of Fc effector functions could make FpF a potential next-generation therapy for local tissue-targeted indications.
- Publikační typ
- časopisecké články MeSH
Formation of interpolyelectrolyte complexes (IPECs) of poly(methacrylic acid) (PMAA) bearing a fluorescent label (umbelliferone) at the chain end and poly[3,5-bis(trimethyl ammoniummethyl)-4-hydroxystyrene iodide]-block-poly(ethylene oxide) (QNPHOS-PEO) acting as a fluorescence quencher, was followed using a combination of scattering, calorimetry, microscopy and fluorescence spectroscopy techniques. While scattering and microscopy measurements indicated formation of spherical core/corona nanoparticles with the core of the QNPHOS/PMAA complex and the PEO corona, fluorescence measurements showed that both static and dynamic quenching efficiency were increased in the nanoparticle stability region. As the dynamic quenching rate constant remained unchanged, the quenching enhancement was caused by the increase in the local concentration of QNPHOS segments in the microenvironment of the label. This finding implies that the local dynamics of PMAA end chains affecting the interaction of the label with QNPHOS segments was independent of both PMAA and QNPHOS chain conformations.
- Publikační typ
- časopisecké články MeSH
Amphiphilic poly( N-(2-hydroxypropyl)methacrylamide) copolymers ( pHPMA) bearing cholesterol side groups in phosphate buffer saline self-assemble into nanoparticles (NPs) which can be used as tumor-targeted drug carriers. It was previously shown by us that human serum albumin (HSA) interacts weakly with the NPs. However, the mechanism of this binding could not be resolved due to overlapping of signals from the complex system. Here, we use fluorescence labeling to distinguish the components and to characterize the binding: On the one hand, a fluorescent dye was attached to pHPMA, so that the diffusion behavior of the NPs could be studied in the presence of HSA using fluorescence lifetime correlation spectroscopy. On the other hand, quenching of the intrinsic fluorescence of HSA revealed the origin of the binding, which is mainly the complexation between HSA and cholesterol side groups. Furthermore, a binding constant was obtained.
- MeSH
- fluorescenční spektrometrie * MeSH
- lidé MeSH
- lidský sérový albumin * metabolismus MeSH
- makromolekulární látky MeSH
- nanočástice chemie MeSH
- nosiče léků chemie MeSH
- sérový albumin MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lidský sérový albumin * MeSH
- makromolekulární látky MeSH
- nosiče léků MeSH
- sérový albumin MeSH