The main entrance point of highly toxic organic Hg forms, including methylmercury (MeHg), into the aquatic food web is phytoplankton, which is greatly represented by various natural microalgal species. Processes associated with MeHg fate in microalgae cells such as uptake, effects on cells and toxicity, Hg biotransformation, and intracellular stability are detrimental to the process of further biomagnification and, as a consequence, have great importance for human health. The study of MeHg uptake and distribution in cultures of marine halophile Dunaliella salina and freshwater acidophilic alga Coccomyxa onubensis demonstrated that most of the MeHg is imported inside the cell, while cell surface adhesion is insignificant. Almost all MeHg is removed from the culture medium after 72 h. Significant processes in rapid MeHg removal from liquid medium are its abiotic photodegradation and volatilization associated with algal enzymatic activity. The maximum intracellular accumulation for both species was in 80 nM MeHg-exposed cultures after 24 h of exposure for D. salina (from 27 to 34 µg/gDW) and at 48 h for C. onubensis (up to 138 µg/gDW). The different Hg intakes in these two strains could be explained by the lack of a rigid cell wall in D. salina and the higher chemical ability of MeHg to pass through complex cell wall structures in C. onubensis. Electron microscopy studies on the ultrastructure of both strains demonstrated obvious microvacuolization in the form of many very small vacuoles and partial cell membrane disruption in 80 nM MeHg-exposed cultures. Results further showed that Coccomyxa onubensis is a good candidate for MeHg-contaminated water reclamation due to its great robustness at nanomolar concentrations of MeHg coupled with its very high intake and almost complete Hg removal from liquid medium at the MeHg levels tested.
- Klíčová slova
- mercury contamination, mercury toxicity, methylmercury, microalgae,
- Publikační typ
- časopisecké články MeSH
The biogeochemical cycling of mercury in aquatic environments is a complex process driven by various factors, such as ambient temperature, seasonal variations, methylating bacteria activity, dissolved oxygen levels, and Hg interaction with dissolved organic matter (DOM). As a consequence, part of the Hg contamination from anthropogenic activity that was buried in sediments is reinserted into water columns mainly in highly toxic organic Hg forms (methylmercury, dimethylmercury, etc.). This is especially prominent in the coastal shallow waters of industrial regions worldwide. The main entrance point of these highly toxic Hg forms in the aquatic food web is the naturally occurring phytoplankton. Hg availability, intake, effect on population size, cell toxicity, eventual biotransformation, and intracellular stability in phytoplankton are of the greatest importance for human health, having in mind that such Hg incorporated inside the phytoplankton cells due to biomagnification effects eventually ends up in aquatic wildlife, fish, seafood, and in the human diet. This review summarizes recent findings on the topic of organic Hg form interaction with natural phytoplankton and offers new insight into the matter with possible directions of future research for the prevention of Hg biomagnification in the scope of climate change and global pollution increase scenarios.
- Klíčová slova
- Hg toxicity, aquatic environments, mercury cycling, phytoplankton,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits-conceptually called "rock's habitable architecture." Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation.
- Klíčová slova
- Atacama Desert, carotenoids, endolithic chlorophototrophs, extreme environment, gypsum, scytonemin,
- Publikační typ
- časopisecké články MeSH
The aim of this work was to study the effect of Se(+VI) on viability, cell morphology, and selenomethionine accumulation of the green alga Chlorella sorokiniana grown in batch cultures. Culture exposed to sublethal Se concentrations of 40 mg · L(-1) (212 μM) decreased growth rates for about 25% compared to control. A selenate EC50 value of 45 mg · L(-1) (238.2 μM) was determined. Results showed that chlorophyll and carotenoids contents were not affected by Se exposure, while oxygen evolution decreased by half. Ultrastructural studies revealed granular stroma, fingerprint-like appearance of thylakoids which did not compromise cell activity. Unlike control cultures, SDS PAGE electrophoresis of crude extracts from selenate-exposed cell cultures revealed appearance of a protein band identified as 53 kDa Rubisco large subunit of Chlorella sorokiniana, suggesting that selenate affects expression of the corresponding chloroplast gene as this subunit is encoded in the chloroplast DNA. Results revealed that the microalga was able to accumulate up to 140 mg · kg(-1) of SeMet in 120 h of cultivation. This paper shows that Chlorella sorokiniana biomass can be enriched in the high value aminoacid SeMet in batch cultures, while keeping photochemical viability and carbon dioxide fixation activity intact, if exposed to suitable sublethal concentrations of Se.
- MeSH
- bioreaktory mikrobiologie MeSH
- Chlorella cytologie účinky léků fyziologie MeSH
- kyselina selenová aplikace a dávkování MeSH
- proliferace buněk účinky léků fyziologie MeSH
- selenomethionin izolace a purifikace metabolismus MeSH
- techniky vsádkové kultivace metody MeSH
- velikost buňky účinky léků MeSH
- viabilita buněk účinky léků fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina selenová MeSH
- selenomethionin MeSH