Body odors offer a unique window into the physiological and psychological profile of the emitter. This information, broadcast in nonverbal communication, significantly shapes social interactions. However, effectively digitizing body odors requires a precise framework for perceptual operationalization. Previous research has used a very limited number of verbal terms, such as pleasant, intense, or attractive, which fails to adequately capture qualitative differences. To address this gap, we elicited body odor descriptions from 2,607 participants across 17 countries and 13 languages. All these descriptions are presented here in one dataset, together with a condensed list of 25 body odor words (BOW). Those terms reliably differentiated between body states, and were validated in a separate study with a different group of 155 perceivers. The dataset, available as a web application, provides a novel operationalization of body odor impressions, which is a precondition for studying olfaction in human nonverbal communication, for perception-based digitization of body odors and for comparative studies.
- MeSH
- čich MeSH
- jazyk (prostředek komunikace) MeSH
- lidé MeSH
- neverbální komunikace * MeSH
- odoranty * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
TAIMAN (TAI), the only insect ortholog of mammalian Steroid Receptor Coactivators (SRCs), is a critical modulator of ecdysone and juvenile hormone (JH) signaling pathways, which govern insect development and reproduction. The modulatory effect is mediated by JH-dependent TAI's heterodimerization with JH receptor Methoprene-tolerant and association with the Ecdysone Receptor complex. Insect hormones regulate insect physiology and development in concert with abiotic cues, such as photo- and thermoperiod. Here we tested the effects of JH and ecdysone signaling on the circadian clock by a combination of microsurgical operations, application of hormones and hormone mimics, and gene knockdowns in the linden bug Pyrrhocoris apterus males. Silencing taiman by each of three non-overlapping double-strand RNA fragments dramatically slowed the free-running period (FRP) to 27-29 hours, contrasting to 24 hours in controls. To further corroborate TAIMAN's clock modulatory function in the insect circadian clock, we performed taiman knockdown in the cockroach Blattella germanica. Although Blattella and Pyrrhocoris lineages separated ~380 mya, B. germanica taiman silencing slowed the FRP by more than 2 hours, suggesting a conserved TAI clock function in (at least) some insect groups. Interestingly, the pace of the linden bug circadian clock was neither changed by blocking JH and ecdysone synthesis, by application of the hormones or their mimics nor by the knockdown of corresponding hormone receptors. Our results promote TAI as a new circadian clock modulator, a role described for the first time in insects. We speculate that TAI participation in the clock is congruent with the mammalian SRC-2 role in orchestrating metabolism and circadian rhythms, and that TAI/SRCs might be conserved components of the circadian clock in animals.
- MeSH
- buněčná membrána MeSH
- cirkadiánní hodiny * genetika MeSH
- cirkadiánní rytmus genetika MeSH
- ekdyson genetika MeSH
- hmyz MeSH
- juvenilní hormony genetika MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ekdyson MeSH
- juvenilní hormony MeSH
Termites are dominant animals of tropical terrestrial ecosystems. Their success is due to their eusocial organization as well as their ability to digest dead plant tissues. While being extremely abundant, the termite diet is poor in crucial nutrients, such as fatty acids. Linoleic acid (LA) is a precursor for many vital biomolecules, and most animals depend on its dietary supply. Termites count among the exceptions known to produce LA de novo, presumably via the action of an unknown Δ12 fatty acyl desaturase (FAD) introducing the second double bond into monounsaturated oleic acid. Here, we search for the evolutionary origin of LA biosynthesis in termites. To this end, we compile the repertoire of FAD homologs from 57 species of termites and their closest relatives, the cockroaches, analyze FAD phylogeny, and identify a potential Δ12 FAD branch, which arose through duplication of a likely Δ9 FAD. We functionally characterize both paralogs and identify the Δ9 activity in the ancestral FAD-A1a and the Δ12 activity responsible for LA biosynthesis in FAD-A1b. Through the combination of homology modeling and site-directed mutagenesis, we pinpoint structural features possibly contributing to the distinct functions, regiospecificities, and substrate preferences of the two enzymes. We confirm the presence of both paralogs in all 36 studied species of the Blattoidea lineage (Blattidae, Lamproblattidae, Cryptocercidae, and termites) and conclude that we identified an evolutionary event important for the ecological success of termites, which took place in their cockroach ancestors roughly 160 My and remained conserved throughout termite diversification into 3,000 extant species.
- Klíčová slova
- Blattodea, Isoptera, biosynthesis, fatty acyl desaturases, linoleic acid, termites,
- MeSH
- ekosystém MeSH
- fylogeneze MeSH
- Isoptera * genetika MeSH
- kyselina linolová MeSH
- mastné kyseliny MeSH
- švábi * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina linolová MeSH
- mastné kyseliny MeSH
It is long established that queens of social insects, including termites, maintain their reproductive dominance with queen primer pheromones (QPPs). Yet, the QPP chemistry has only been elucidated in a single species of lower termites. By contrast, the most diversified termite family Termitidae (higher termites), comprising over 70% of termite species, has so far resisted all attempts at QPP identification. Here, we show that the queen- and egg-specific sesquiterpene (3R,6E)-nerolidol acts as the QPP in the higher termite Embiratermes neotenicus. This species has a polygynous breeding system, in which the primary queen is replaced by multiple neotenic queens of parthenogenetic origin. We demonstrate that (3R,6E)-nerolidol suppresses the development of these parthenogenetic queens and thus mimics the presence of mature queen(s). It acts as an airborne signal and may be used to optimize the number of queens, thus being the key regulatory element in the special breeding system of E. neotenicus.
- MeSH
- feromony MeSH
- Isoptera * MeSH
- partenogeneze MeSH
- seskviterpeny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- feromony MeSH
- nerolidol MeSH Prohlížeč
- seskviterpeny * MeSH
Juvenile hormone (JH) controls insect reproduction and development through an intracellular receptor complex comprising two bHLH-PAS proteins, the JH-binding Methoprene-tolerant (Met) and its partner Taiman (Tai). Many hemimetabolous insects including cockroaches strictly depend on JH for stimulation of vitellogenesis. In termites, the eusocial hemimetabolans, JH also regulates the development of caste polyphenism. Studies addressing the agonist ligand binding to recombinant JH receptors currently include three species belonging to two holometabolous insect orders, but none that would represent any of the hemimetabolous orders. Here, we examined JH receptors in two representatives of Blattodea, the cockroach Blattella germanica and the termite Prorhinotermes simplex. To test the JH-binding capacity of Met proteins from these species, we performed chemical synthesis and tritium labeling of the natural blattodean JH homolog, JH III. Our improved protocol increased the yield and specific activity of [10-3H]JH III relative to formerly available preparations. Met proteins from both species specifically bound [3H]JH III with high affinity, whereas Met variants mutated at a critical position within the ligand-binding domain were incapable of such binding. Furthermore, JH III and the synthetic JH mimic fenoxycarb stimulated dimerization between Met and Tai components of the respective JH receptors of both species. These data present primary evidence for agonist binding by JH receptors in any hemimetabolous species and provide a molecular basis for JH action in cockroaches and termites.
- Klíčová slova
- Cockroach, Hormone receptor, Juvenile hormone, Ligand binding, Methoprene-tolerant, Termite,
- MeSH
- Ectobiidae metabolismus MeSH
- hmyzí proteiny metabolismus MeSH
- Isoptera metabolismus MeSH
- seskviterpeny metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
- juvenile hormone III MeSH Prohlížeč
- seskviterpeny MeSH
The queens of advanced social insects maintain their reproductive monopoly by using exocrine chemicals. The chemistry of these "queen pheromones" in termites is poorly known. We show that primary queens of four higher termites from the subfamily Syntermitinae (Embiratermes neotenicus, Silvestritermes heyeri, Labiotermes labralis, and Cyrilliotermes angulariceps) emit significant amounts of the sesquiterpene alcohol (E)-nerolidol. It is the dominant analyte in queen body washes; it is present on the surface of eggs, but absent in kings, workers, and soldiers. In E. neotenicus, it is also produced by replacement neotenic queens, in quantities correlated with their fertility. Using newly synthesised (3R,6E)-nerolidol, we demonstrate that the queens of this species produce only the (R) enantiomer. It is distributed over the surface of their abdomen, in internal tissues, and in the haemolymph, as well as in the headspace of the queens. Both (R) and (S) enantiomers are perceived by the antennae of E. neotenicus workers. The naturally occurring (R) enantiomer elicited a significantly larger antennal response, but it did not show any behavioural effect. In spite of technical difficulties encountered in long-term experiments with the studied species, (3R,6E)-nerolidol remains among eventual candidates for the role in queen fertility signalling.
- Klíčová slova
- (E)-nerolidol, Syntermitinae, fertility signalling, higher termites, social insects,
- MeSH
- feromony chemie metabolismus MeSH
- fertilita MeSH
- Isoptera metabolismus fyziologie MeSH
- komunikace zvířat MeSH
- seskviterpeny chemie metabolismus MeSH
- sociální chování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- feromony MeSH
- nerolidol MeSH Prohlížeč
- seskviterpeny MeSH
The queens of social insects differ from sterile colony members in many aspects of their physiology. Besides adaptations linked with their specialization for reproduction and extended lifespan, the queens also invest in the maintenance of their reproductive dominance by producing exocrine chemicals signaling their presence to the nestmates. The knowledge of the chemistry of queen-specific cues in termites is scarce. In addition to the contact recognition based on cuticular hydrocarbons, long-range signals mediated by volatiles are expected to participate in queen signaling, especially in populous colonies of higher termites (Termitidae). In queens of the higher termite Silvestritermes minutus (Syntermitinae), we have detected a previously undescribed volatile. It is present in important quantities on the body surface and in the headspace, ovaries, and body cavity. MS and GC-FTIR data analyses led us to propose the structure of the compound to be a macrolide 10-pentyl-3,4,5,8,9,10-hexahydro-2 H-oxecin-2-one. We performed enantiodivergent syntheses of two possible enantiomers starting from enantiopure ( S)-glycidyl tosylate. The synthetic sequence involved macrolide-closing metathesis quenched with a ruthenium scavenging agent. The absolute and relative configuration of the compound was assigned to be (5 Z,9 S)-tetradec-5-en-9-olide. Identification and preparation of the compound allow for investigation of its biological significance.
- MeSH
- hmotnostní spektrometrie MeSH
- indikátory a reagencie MeSH
- Isoptera chemie MeSH
- makrolidy chemická syntéza chemie farmakologie MeSH
- molekulární struktura MeSH
- ovarium chemie MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- stereoizomerie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- indikátory a reagencie MeSH
- makrolidy MeSH
Termite colonies are almost always founded by a pair of winged dispersers, in spite of the high costs and low success rates inherent in independent colony foundation. The dispersal flights of imagoes from natal colonies are followed by mate search, mediated by sex-pairing pheromones. Here, we studied the chemistry of sex-pairing pheromones and the related aspects of mate search in winged imagoes of two facultatively parthenogenetic species, Embiratermes neotenicus and Silvestritermes minutus, and an additional species from the same subfamily, Silvestritermes heyeri. All three species are widespread in the Neotropics, including the rainforests of French Guiana. After the dispersal flight and spontaneous loss of wings, females expose their hypertrophied tergal glands situated under abdominal tergites VIII - X. The females are attractive to males and, upon direct contact, the two sexes form characteristic tandems. Chemical analyses indicated that the females secrete species-specific combinations of unbranched, unsaturated C12 primary alcohols from the tergal glands, (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol (approx. 200 pg per female) and (3Z)-dodec-3-enol (185 pg) in E. neotenicus, (3Z,6Z)-dodeca-3,6-dien-1-ol (3500 pg) in S. heyeri, and (3Z,6Z)-dodeca-3,6-dien-1-ol (300 pg) and (3Z)-dodec-3-enol (50 pg) in S. minutus. (3Z,6Z,8E)-Dodeca-3,6,8-trien-1-ol and (3Z,6Z)-dodeca-3,6-dien-1-ol act as major pheromone components in the respective species and mimic the function of female tergal gland extracts in electrophysiological and behavioral experiments. Biologically relevant amounts of the third compound, (3Z)-dodec-3-enol, elicited non-significant reactions in males of E. neotenicus and S. minutus, and slight synergistic effects in males of S. minutus when tested in combination with the major component.
- Klíčová slova
- Embiratermes neotenicus, Sex-pairing pheromones, Silvestritermes heyeri, Silvestritermes minutus, Syntermitinae, Tergal glands,
- MeSH
- alkoholy chemie izolace a purifikace MeSH
- druhová specificita MeSH
- exokrinní žlázy metabolismus patologie MeSH
- Isoptera fyziologie MeSH
- mikroextrakce na pevné fázi MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody MeSH
- sexuální chování zvířat fyziologie MeSH
- sexuální lákadla analýza chemie izolace a purifikace MeSH
- stereoizomerie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkoholy MeSH
- sexuální lákadla MeSH
Instrumental human scent analysis is undoubtedly desirable for many forensic as well medical applications. Most of the previous human scent studies were focused on volatile organic compounds (VOCs) which were analysed by head space solid phase micro-extraction gas chromatography/mass spectrometry (HS-SPME-GC/MS). This method is, however, significantly less sensitive to "heavier" less volatile compounds emitted from the human skin. These less volatile organic scent molecules probably create the basis of the individual human scent signature, and therefore, our attention is focused mainly on these "heavier" compounds. The human scent was adsorbed onto purified glass beads and samples were prepared as hexane solutions obtained by extraction from the sampled glass beads. To resolve a lot of very similar molecules, the comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometer (GCxGC-TOFMS) was used to analyse the hexane scent solutions. Using this technique, more than 137 less volatile molecules including organic fatty acids, ketones, aldehydes, simple esters, alcohols, and especially various fatty acid esters with different carbon chains were identified. A considerable number of these molecules were identified in the scent samples for the first time.
- Klíčová slova
- Forensic chemistry, GCxGC–TOFMS, Human scent analysis, Human scent signature, Molecular composition of human scent,
- MeSH
- adsorpce MeSH
- lidé MeSH
- mikroextrakce na pevné fázi metody MeSH
- pleťový krém chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí přístrojové vybavení metody MeSH
- těkavé organické sloučeniny chemie izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- těkavé organické sloučeniny MeSH