Metastatic colorectal cancer (mCRC) is characterized by its extensive disease heterogeneity, suggesting that individualized analysis could be vital to improving patient outcomes. As a minimally invasive approach, the liquid biopsy has the potential to longitudinally monitor heterogeneous analytes. Current platforms primarily utilize enrichment-based approaches for epithelial-derived circulating tumor cells (CTC), but this subtype is infrequent in the peripheral blood (PB) of mCRC patients, leading to the liquid biopsy's relative disuse in this cancer type. In this study, we evaluated 18 PB samples from 10 mCRC patients using the unbiased high-definition single-cell assay (HDSCA). We first employed a rare-event (Landscape) immunofluorescence (IF) protocol, which captured a heterogenous CTC and oncosome population, the likes of which was not observed across 50 normal donor (ND) samples. Subsequent analysis was conducted using a colorectal-targeted IF protocol to assess the frequency of CDX2-expressing CTCs and oncosomes. A multi-assay clustering analysis isolated morphologically distinct subtypes across the two IF stains, demonstrating the value of applying an unbiased single-cell approach to multiple assays in tandem. Rare-event enumerations at a single timepoint and the variation of these events over time correlated with progression-free survival. This study supports the clinical utility of an unbiased approach to interrogating the liquid biopsy in mCRC, representing the heterogeneity within the CTC classification and warranting the further molecular characterization of the rare-event analytes with clinical promise.
- Klíčová slova
- circulating tumor cells, colorectal cancer, heterogeneity, high-definition single-cell assay, liquid biopsy, multi-assay, oncosomes, rare cell,
- Publikační typ
- časopisecké články MeSH
The liquid biopsy has the potential to improve current clinical practice in oncology by providing real-time personalized information about a patient's disease status and response to treatment. In this study, we evaluated 161 peripheral blood (PB) samples that were collected around surgical resection from 47 metastatic colorectal cancer (mCRC) patients using the High-Definition Single Cell Assay (HDSCA) workflow. In conjunction with the standard circulating tumor cell (CTC) enumeration, cellular morphology and kinetics between time-points of collection were considered in the survival analysis. CTCs, CTC-Apoptotic, and CTC clusters were found to indicate poor survival with an increase in cell count from pre-resection to post-resection. This study demonstrates that CTC subcategorization based on morphological differences leads to nuanced results between the subtypes, emphasizing the heterogeneity within the CTC classification. Furthermore, we show that factoring in the time-point of each blood collection is critical, both for its static enumeration and for the change in cell populations between draws. By integrating morphology and time-based analysis alongside standard CTC enumeration, liquid biopsy platforms can provide greater insight into the pathophysiology of mCRC by highlighting the complexity of the disease across a patient's treatment.
- Klíčová slova
- High-Definition Single Cell Assay, circulating tumor cells, colorectal cancer, kinetics, liquid biopsy, morphology,
- Publikační typ
- časopisecké články MeSH
Colorectal carcinoma (CRC) is characterized by wide intratumor heterogeneity with general genomic instability and there is a need for improved diagnostic, prognostic, and therapeutic tools. The liquid biopsy provides a noninvasive route of sample collection for analysis of circulating tumor cells (CTCs) and genomic material, including cell-free DNA (cfDNA), as a complementary biopsy to the solid tumor tissue. The solid biopsy is critical for molecular characterization and diagnosis at the time of collection. The liquid biopsy has the advantage of longitudinal molecular characterization of the disease, which is crucial for precision medicine and patient-oriented treatment. In this review, we provide an overview of CRC and the different methodologies for the detection of CTCs and cfDNA, followed by a discussion on the potential clinical utility of the liquid biopsy in CRC patient care, and lastly, current challenges in the field.
- Klíčová slova
- CRC, CTC, cfDNA, circulating free DNA, circulating tumor DNA, circulating tumor cell, colorectal carcinoma, ctDNA, liquid biopsy, precision medicine,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
As cancer care is transitioning to personalized therapies with necessary complementary or companion biomarkers there is significant interest in determining to what extent non-invasive liquid biopsies reflect the gold standard solid biopsy. We have established an approach for measuring patient-specific circulating and solid cell concordance by introducing tumor touch preparations to the High-Definition Single Cell Analysis workflow for high-resolution cytomorphometric characterization of metastatic colorectal cancer (mCRC). Subgroups of cells based on size, shape and protein expression were identified in both liquid and solid biopsies, which overall displayed high inter- and intra- patient pleomorphism at the single-cell level of analysis. Concordance of liquid and solid biopsies was patient-dependent and between 0.1-0.9. Morphometric variables displayed particularly high correlation, suggesting that circulating cells do not represent distinct subpopulations from the solid tumor. This was further substantiated by significant decrease in concentration of circulating cells after mCRC resection. Combined with the association of circulating cells with tumor burden and necrosis of hepatic lesions, our overall findings demonstrate that liquid biopsy cells can be informative biomarkers in the mCRC setting. Patient-specific level of concordance can readily be measured to establish the utility of circulating cells as biomarkers and define biosignatures for liquid biopsy assays.
- Klíčová slova
- circulating tumor cells, cytomorphology, liquid biopsy, metastatic colorectal cancer, single cell analysis,
- Publikační typ
- časopisecké články MeSH