Liquid Biopsy in Colorectal Carcinoma: Clinical Applications and Challenges

. 2020 May 27 ; 12 (6) : . [epub] 20200527

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32471160

Grantová podpora
Kolencik D Fulbright Czech Republic and US

Colorectal carcinoma (CRC) is characterized by wide intratumor heterogeneity with general genomic instability and there is a need for improved diagnostic, prognostic, and therapeutic tools. The liquid biopsy provides a noninvasive route of sample collection for analysis of circulating tumor cells (CTCs) and genomic material, including cell-free DNA (cfDNA), as a complementary biopsy to the solid tumor tissue. The solid biopsy is critical for molecular characterization and diagnosis at the time of collection. The liquid biopsy has the advantage of longitudinal molecular characterization of the disease, which is crucial for precision medicine and patient-oriented treatment. In this review, we provide an overview of CRC and the different methodologies for the detection of CTCs and cfDNA, followed by a discussion on the potential clinical utility of the liquid biopsy in CRC patient care, and lastly, current challenges in the field.

Zobrazit více v PubMed

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Arnold M., Sierra M.S., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2016;66:683–691. doi: 10.1136/gutjnl-2015-310912. PubMed DOI

Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA A Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551. PubMed DOI

Araghi M., Soerjomataram I., Jenkins M.A., Brierley J., Morris E., Bray F., Arnold M. Global trends in colorectal cancer mortality: Projections to the year 2035. Int. J. Cancer. 2019;144:2992–3000. doi: 10.1002/ijc.32055. PubMed DOI

Sharp L., O’Leary E., O’Ceilleachair A., Skally M., Hanly P. Financial Impact of Colorectal Cancer and Its Consequences. Dis. Colon Rectum. 2018;61:27–35. doi: 10.1097/DCR.0000000000000923. PubMed DOI

John S.K.P., George S., Primrose J.N., Fozard J.B.J. Symptoms and signs in patients with colorectal cancer. Color. Dis. 2010;13:17–25. doi: 10.1111/j.1463-1318.2010.02221.x. PubMed DOI

Uraoka T., Hosoe N., Yahagi N. Colonoscopy: Is it as effective as an advanced diagnostic tool for colorectal cancer screening? Expert Rev. Gastroenterol. Hepatol. 2014;9:129–132. doi: 10.1586/17474124.2015.960397. PubMed DOI

Baek S.K. Laterality: Right-Sided and Left-Sided Colon Cancer. Ann. Coloproctol. 2017;33:205–206. doi: 10.3393/ac.2017.33.6.205. PubMed DOI PMC

Helvaci K., Eraslan E., Yildiz F., Tufan G., Demirci U., Berna Oksuzoglu O., Yalcintas Arslan U. Comparison of clinicopathological and survival features of right and left colon cancers. J. BUON Off. J. Balk. Union Oncol. 2019;24:1845–1851. PubMed

Mik M., Dziki Ł., Trzciński R. Risk factors of 30-day mortality following surgery for colorectal cancer. Pol. J. Surg. 2016;88:26–31. doi: 10.1515/pjs-2016-0023. PubMed DOI

Doubeni C.A., Corley D.A., Quinn V.P., Jensen C.D., Zauber A.G., Goodman M., Johnson J.R., Mehta S.J., Becerra T.A., Zhao W.K., et al. Effectiveness of screening colonoscopy in reducing the risk of death from right and left colon cancer: A large community-based study. Gut. 2016;67:291–298. doi: 10.1136/gutjnl-2016-312712. PubMed DOI PMC

Nawa T., Kato J., Kawamoto H., Okada H., Yamamoto H., Kohno H., Endo H., Shiratori Y. Differences between right- and left-sided colon cancer in patient characteristics, cancer morphology and histology. J. Gastroenterol. Hepatol. 2008;23:418–423. doi: 10.1111/j.1440-1746.2007.04923.x. PubMed DOI

Richman S.D., Chambers P., Seymour M.T., Daly C., Grant S., Hemmings G., Quirke P. Intra-tumoral Heterogeneity of KRAS and BRAF Mutation Status in Patients with Advanced Colorectal Cancer (aCRC) and Cost-Effectiveness of Multiple Sample Testing. Anal. Cell. Pathol. 2011;34:61–66. doi: 10.1155/2011/393521. PubMed DOI PMC

Smith G., Carey F.A., Beattie J., Wilkie M.J.V., Lightfoot T.J., Coxhead J., Garner R.C., Steele R.J., Wolf C.R. Mutations in APC, Kirsten-ras, and p53—Alternative genetic pathways to colorectal cancer. Proc. Natl. Acad. Sci. USA. 2002;99:9433–9438. doi: 10.1073/pnas.122612899. PubMed DOI PMC

Ionov Y., Peinado M.A., Malkhosyan S., Shibata D., Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–561. doi: 10.1038/363558a0. PubMed DOI

Samowitz W.S. Poor Survival Associated with the BRAF V600E Mutation in Microsatellite-Stable Colon Cancers. Cancer Res. 2005;65:6063–6069. doi: 10.1158/0008-5472.CAN-05-0404. PubMed DOI

Shen L., Catalano P.J., Benson A.B., O’Dwyer P., Hamilton S.R., Issa J.-P. Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil based chemotherapy. Clin. Cancer Res. 2007;13:6093–6098. doi: 10.1158/1078-0432.CCR-07-1011. PubMed DOI PMC

Weisenberger D.J., Siegmund K.D., Campan M., Young J., Long T.I., Faasse M., Kang G., Widschwendter M., Weener D., Buchanan D., et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 2006;38:787–793. doi: 10.1038/ng1834. PubMed DOI

Hadjihannas M.V., Brückner M., Jerchow B., Birchmeier W., Dietmaier W., Behrens J. Aberrant Wnt/beta-catenin signaling can induce chromosomal instability in colon cancer. Proc. Natl. Acad. Sci. USA. 2006;103:10747–10752. doi: 10.1073/pnas.0604206103. PubMed DOI PMC

Cisyk A., Penner-Goeke S., Lichtensztejn Z., Nugent Z., Wightman R., Singh H., McManus K.J. Characterizing the prevalence of chromosome instability in interval colorectal cancer. Neoplasia. 2015;17:306–316. doi: 10.1016/j.neo.2015.02.001. PubMed DOI PMC

Thomas D.C., Umar A., Kunkel T. Microsatellite instability and mismatch repair defects in cancer cells. Mutat. Res. Mol. Mech. Mutagen. 1996;350:201–205. doi: 10.1016/0027-5107(95)00112-3. PubMed DOI

Boland C.R., Thibodeau S.N., Hamilton S.R., Sidransky D., Eshleman J.R., Burt R.W., Meltzer S.J., Rodriguez-Bigas M.A., Fodde R., Ranzani G.N., et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–5257. PubMed

Alexander J., Watanabe T., Wu T.-T., Rashid A., Li S., Hamilton S.R. Histopathological Identification of Colon Cancer with Microsatellite Instability. Am. J. Pathol. 2001;158:527–535. doi: 10.1016/S0002-9440(10)63994-6. PubMed DOI PMC

Lanza G., Gafà R., Maestri I., Santini A., Matteuzzi M., Cavazzini L. Immunohistochemical Pattern of MLH1/MSH2 Expression Is Related to Clinical and Pathological Features in Colorectal Adenocarcinomas with Microsatellite Instability. Mod. Pathol. 2002;15:741–749. doi: 10.1097/01.MP.0000018979.68686.B2. PubMed DOI

Ricciardiello L., Ceccarelli C., Angiolini G., Pariali M., Chieco P., Paterini P., Biasco G., Martinelli G.N., Roda E., Bazzoli F. High Thymidylate Synthase Expression in Colorectal Cancer with Microsatellite Instability: Implications for Chemotherapeutic Strategies. Clin. Cancer Res. 2005;11:4234–4240. doi: 10.1158/1078-0432.CCR-05-0141. PubMed DOI

Trautmann K., Terdiman J.P., French A.J., Roydasgupta R., Sein N., Kakar S., Fridlyand J., Snijders A.M., Albertson N.G., Thibodeau S.N., et al. Chromosomal Instability in Microsatellite-Unstable and Stable Colon Cancer. Clin. Cancer Res. 2006;12:6379–6385. doi: 10.1158/1078-0432.CCR-06-1248. PubMed DOI

Peltomaki P. Deficient DNA mismatch repair: A common etiologic factor for colon cancer. Hum. Mol. Genet. 2001;10:735–740. doi: 10.1093/hmg/10.7.735. PubMed DOI

Hinoue T., Weisenberger D.J., Lange C.P., Shen H., Byun H.-M., Berg D.V.D., Malik S., Pan F., Noushmehr H., Van Dijk C.M., et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2011;22:271–282. doi: 10.1101/gr.117523.110. PubMed DOI PMC

Ogino S., Nosho K., Kirkner G.J., Kawasaki T., Meyerhardt J.A., Loda M., Giovannucci E.L., Fuchs C.S. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2008;58:90–96. doi: 10.1136/gut.2008.155473. PubMed DOI PMC

Toyota M., Ahuja N., Ohe-Toyota M., Herman J.G., Baylin S.B., Issa J.-P. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA. 1999;96:8681–8686. doi: 10.1073/pnas.96.15.8681. PubMed DOI PMC

Huang D., Sun W., Zhou Y., Li P., Chen F., Chen H., Xia D., Xu E., Lai M., Wu Y., et al. Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 2018;37:173–187. doi: 10.1007/s10555-017-9726-5. PubMed DOI

Yaeger R., Chatila W.K., Lipsyc M.D., Hechtman J., Cercek A., Sanchez-Vega F., Jayakumaran G., Middha S., Zehir A., Donoghue M.T., et al. Clinical Sequencing Defines the Genomic Landscape of Metastatic Colorectal Cancer. Cancer Cell. 2018;33:125–136.e3. doi: 10.1016/j.ccell.2017.12.004. PubMed DOI PMC

Horst D. Plastizität der WNT-Signalwegaktivität im Kolonkarzinom. Der Pathol. 2012;33:194–197. doi: 10.1007/s00292-012-1660-2. PubMed DOI

Kongkanuntn R., Bubb V.J., Sansom O.J., Wyllie A.H., Harrison D.J., Clarke A. Dysregulated expression of β-catenin marks early neoplastic change in Apc mutant mice, but not all lesions arising in Msh2 deficient mice. Oncogene. 1999;18:7219–7225. doi: 10.1038/sj.onc.1203181. PubMed DOI

Jeong W.-J., Yoon J.-B., Park J.-C., Lee S.-H., Kaduwal S., Kim H., Choi K.-Y. Ras Stabilization Through Aberrant Activation of Wnt/ -Catenin Signaling Promotes Intestinal Tumorigenesis. Sci. Signal. 2012;5:ra30. doi: 10.1126/scisignal.2002242. PubMed DOI

Lemieux E., Cagnol S., Beaudry K., Carrier J., Rivard N. Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene. 2014;34:4914–4927. doi: 10.1038/onc.2014.416. PubMed DOI PMC

Hatzivassiliou G., Haling J.R., Chen H., Song K., Price S., Heald R., Hewitt J.F.M., Zak M., Peck A., Orr C., et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature. 2013;501:232–236. doi: 10.1038/nature12441. PubMed DOI

Haigis K.M., Kendall K.R., Wang Y., Cheung A., Haigis M.C., Glickman J.N., Niwa-Kawakita M., Sweet-Cordero A., Sebolt-Leopold J., Shannon K.M., et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat. Genet. 2008;40:600–608. doi: 10.1038/ng.115. PubMed DOI PMC

Pacold M.E., Suire S., Perisic O., Lara-González S., Davis C.T., Walker E.H., Hawkins P., Stephens L.R., Eccleston J.F., Williams R.L. Crystal Structure and Functional Analysis of Ras Binding to Its Effector Phosphoinositide 3-Kinase γ. Cell. 2000;103:931–944. doi: 10.1016/S0092-8674(00)00196-3. PubMed DOI

Murillo M.M., Zelenay S., Nye E., Castellano E., Lassailly F., Stamp G., Downward J. RAS interaction with PI3K p110α is required for tumor-induced angiogenesis. J. Clin. Investig. 2014;124:3601–3611. doi: 10.1172/JCI74134. PubMed DOI PMC

Di Nicolantonio F., Martini M., Molinari F., Sartore-Bianchi A., Arena S., Saletti P., De Dosso S., Mazzucchelli L., Frattini M., Siena S., et al. Wild-Type BRAF Is Required for Response to Panitumumab or Cetuximab in Metastatic Colorectal Cancer. J. Clin. Oncol. 2008;26:5705–5712. doi: 10.1200/JCO.2008.18.0786. PubMed DOI

Souglakos J., Philips J., Wang R., Marwah S., Silver M., Tzardi M., Silver J., Ogino S., Hooshmand S., Kwak E., et al. Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br. J. Cancer. 2009;101:465–472. doi: 10.1038/sj.bjc.6605164. PubMed DOI PMC

Yokota T., Ura T., Shibata N., Takahari D., Shitara K., Nomura M., Kondo C., Mizota A., Utsunomiya S., Muro K., et al. BRAF mutation is a powerful prognostic factor in advanced and recurrent colorectal cancer. Br. J. Cancer. 2011;104:856–862. doi: 10.1038/bjc.2011.19. PubMed DOI PMC

Chen J., Guo F., Shi X., Zhang L., Zhang A., Jin H., He Y. BRAF V600E mutation and KRAS codon 13 mutations predict poor survival in Chinese colorectal cancer patients. BMC Cancer. 2014;14:802. doi: 10.1186/1471-2407-14-802. PubMed DOI PMC

Sahin I.H., Kazmi S.M., Yorio J.T., Bhadkamkar N.A., Kee B.K., Garrett C.R. Rare Though Not Mutually Exclusive: A Report of Three Cases of Concomitant KRAS and BRAF Mutation and a Review of the Literature. J. Cancer. 2013;4:320–322. doi: 10.7150/jca.3619. PubMed DOI PMC

Li A.-J., Li H.-G., Tang E.-J., Wu W., Chen Y., Jiang H.-H., Lin M.-B., Yin L. PIK3CA and TP53 mutations predict overall survival of stage II/III colorectal cancer patients. World J. Gastroenterol. 2018;24:631–640. doi: 10.3748/wjg.v24.i5.631. PubMed DOI PMC

Lu T., Li J. Clinical applications of urinary cell-free DNA in cancer: Current insights and promising future. Am. J. Cancer Res. 2017;7:2318–2332. PubMed PMC

Sidransky D., Tokino T., Hamilton S.R., Kinzler K., Levin B., Frost P., Vogelstein B. Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science. 1992;256:102–105. doi: 10.1126/science.1566048. PubMed DOI

De Mattos-Arruda L., Mayor R., Ng C.K.Y., Weigelt B., Martinez-Ricarte F., Torrejon D., Oliveira M., Arias A., Raventós C., Tang J., et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat. Commun. 2015;6:8839. doi: 10.1038/ncomms9839. PubMed DOI PMC

Stefancu A., Badarinza M., Moisoiu V., Iancu S.D., Serban O., Leopold N., Fodor D. SERS-based liquid biopsy of saliva and serum from patients with Sjögren’s syndrome. Anal. Bioanal. Chem. 2019;411:5877–5883. doi: 10.1007/s00216-019-01969-x. PubMed DOI

Song Z., Cai Z., Yan J., Shao Y.W., Zhang Y. Liquid biopsies using pleural effusion-derived exosomal DNA in advanced lung adenocarcinoma. Transl. Lung Cancer Res. 2019;8:392–400. doi: 10.21037/tlcr.2019.08.14. PubMed DOI PMC

Peterson V.M., Castro C.M., Chung J., Miller N.C., Ullal A.V., Castano M.D., Penson R.T., Lee H., Birrer M.J., Weissleder R. Ascites analysis by a microfluidic chip allows tumor-cell profiling. Proc. Natl. Acad. Sci. USA. 2013;110:E4978–E4986. doi: 10.1073/pnas.1315370110. PubMed DOI PMC

Kim M.-Y., Oskarsson T., Acharyya S., Nguyen N.X., Zhang X.H.-F., Norton L., Massagué J. Tumor Self-Seeding by Circulating Cancer Cells. Cell. 2009;139:1315–1326. doi: 10.1016/j.cell.2009.11.025. PubMed DOI PMC

Ruiz C., Li J., Luttgen M.S., Kolatkar A., Kendall J.T., Flores E., Topp Z., Samlowski W.E., McClay E., Bethel K., et al. Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients. Phys. Biol. 2015;12:016008. doi: 10.1088/1478-3975/12/1/016008. PubMed DOI PMC

Che J., Yu V., Garon E.B., Goldman J.W., Di Carlo D. Biophysical isolation and identification of circulating tumor cells. Lab Chip. 2017;17:1452–1461. doi: 10.1039/C7LC00038C. PubMed DOI PMC

Harouaka R., Nisic M., Zheng S.-Y. Circulating tumor cell enrichment based on physical properties. J. Lab. Autom. 2013;18:455–468. doi: 10.1177/2211068213494391. PubMed DOI PMC

Marrinucci D., Bethel K., Kolatkar A., Luttgen M.S., Malchiodi M., Baehring F., Voigt K., Lazar D., Nieva J.J., Bazhenova L., et al. Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys. Biol. 2012;9:016003. doi: 10.1088/1478-3975/9/1/016003. PubMed DOI PMC

Ashworth T.R. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust. Med. J. 1869;14:146.

Hofman V., Ilie M., Long E., Selva E., Bonnetaud C., Molina T., Venissac N., Mouroux J., Vielh P., Hofman P. Detection of circulating tumor cells as a prognostic factor in patients undergoing radical surgery for non-small-cell lung carcinoma: Comparison of the efficacy of the CellSearch Assay™ and the isolation by size of epithelial tumor cell method. Int. J. Cancer. 2011;129:1651–1660. doi: 10.1002/ijc.25819. PubMed DOI

Müller V., Stahmann N., Riethdorf S., Rau T., Zabel T., Goetz A., Jänicke F., Pantel K. Circulating Tumor Cells in Breast Cancer: Correlation to Bone Marrow Micrometastases, Heterogeneous Response to Systemic Therapy and Low Proliferative Activity. Clin. Cancer Res. 2005;11:3678–3685. doi: 10.1158/1078-0432.CCR-04-2469. PubMed DOI

Onidani K., Shoji H., Kakizaki T., Yoshimoto S., Okaya S., Miura N., Sekikawa S., Furuta K., Lim C.T., Shibahara T., et al. Monitoring of cancer patients via next-generation sequencing of patient-derived circulating tumor cells and tumor DNA. Cancer Sci. 2019;110:2590–2599. doi: 10.1111/cas.14092. PubMed DOI PMC

Scher H.I., Lu D., Schreiber N.A., Louw J., Graf R.P., Vargas H.A., Johnson A., Jendrisak A., Bambury R., Danila D., et al. Association of AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol. 2016;2:1441–1449. doi: 10.1001/jamaoncol.2016.1828. PubMed DOI PMC

Gasch C., Bauernhofer T., Pichler M., Langer-Freitag S., Reeh M., Seifert A.M., Mauermann O., Izbicki J., Pantel K., Riethdorf S. Heterogeneity of Epidermal Growth Factor Receptor Status and Mutations of KRAS/PIK3CA in Circulating Tumor Cells of Patients with Colorectal Cancer. Clin. Chem. 2013;59:252–260. doi: 10.1373/clinchem.2012.188557. PubMed DOI

Malihi P.D., Morikado M., Welter L., Liu S.T., Miller E.T., Cadaneanu R.M., Knudsen B.S., Lewis M.S., Carlsson A., Velasco C.R., et al. Clonal diversity revealed by morphoproteomic and copy number profiles of single prostate cancer cells at diagnosis. Converg. Sci. Phys. Oncol. 2018;4:015003. doi: 10.1088/2057-1739/aaa00b. PubMed DOI PMC

Thiele J.-A., Pitule P., Hicks J., Kuhn P. Single-Cell Analysis of Circulating Tumor Cells. Adv. Struct. Saf. Stud. 2019;1908:243–264. doi: 10.1007/978-1-4939-9004-7_17. PubMed DOI PMC

Carlsson A., Nair V.S., Luttgen M.S., Keu K.V., Horng G., Vasanawala M., Kolatkar A., Jamali M., Iagaru A.H., Kuschner W., et al. Circulating tumor microemboli diagnostics for patients with non-small-cell lung cancer. J. Thorac. Oncol. 2014;9:1111–1119. doi: 10.1097/JTO.0000000000000235. PubMed DOI PMC

Steeg P.S. Tumor metastasis: Mechanistic insights and clinical challenges. Nat. Med. 2006;12:895–904. doi: 10.1038/nm1469. PubMed DOI

Szczerba B.M., Castro-Giner F., Vetter M., Krol I., Gkountela S., Landin J., Scheidmann M.C., Donato C., Scherrer R., Singer J., et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019;566:553–557. doi: 10.1038/s41586-019-0915-y. PubMed DOI

Guibert N., Delaunay M., Lusque A., Boubekeur N., Rouquette I., Clermont E., Gouin S., Dormoy I., Favre G., Mazieres J., et al. PD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab. Lung Cancer. 2018;120:108–112. doi: 10.1016/j.lungcan.2018.04.001. PubMed DOI

Boffa D.J., Graf R.P., Salazar M.C., Hoag J., Lu D., Krupa R., Louw J., Dugan L., Wang Y., Landers M., et al. Cellular Expression of PD-L1 in the Peripheral Blood of Lung Cancer Patients is Associated with Worse Survival. Cancer Epidemiol. Biomark. Prev. 2017;26:1139–1145. doi: 10.1158/1055-9965.EPI-17-0120. PubMed DOI PMC

Mandel P., Metais P. Les acides nucleiques du plasma sanguine chez l’homme. Comptes Rendus Seances Soc. Biol. Fil. 1948;142:241–243. PubMed

Jahr S., Hentze H., Englisch S., Hardt D., Fackelmayer F.O., Hesch R.D., Knippers R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–1665. PubMed

Anker P., Stroun M., Maurice P.A. Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res. 1975;35:2375–2382. PubMed

Wang W., Kong P., Ma G., Li L., Zhu J., Xia T., Xie H., Zhou W., Wang S. Characterization of the release and biological significance of cell-free DNA from breast cancer cell lines. Oncotarget. 2017;8:43180–43191. doi: 10.18632/oncotarget.17858. PubMed DOI PMC

Stroun M., Lyautey J., Lederrey C., Olson-Sand A., Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin. Chim. Acta. 2001;313:139–142. doi: 10.1016/S0009-8981(01)00665-9. PubMed DOI

Mouliere F., Thierry A. The importance of examining the proportion of circulating DNA originating from tumor, microenvironment and normal cells in colorectal cancer patients. Expert Opin. Biol. Ther. 2012;12:209–215. doi: 10.1517/14712598.2012.688023. PubMed DOI

Lo Y.M.D., Chan K.C.A., Sun H., Chen E.Z., Jiang P., Lun F.M.F., Zheng Y.W., Leung T.Y., Lau T.K., Cantor C., et al. Maternal Plasma DNA Sequencing Reveals the Genome-Wide Genetic and Mutational Profile of the Fetus. Sci. Transl. Med. 2010;2:61ra91. doi: 10.1126/scitranslmed.3001720. PubMed DOI

Fan H.C., Blumenfeld Y.J., Chitkara U., Hudgins L., Quake S.R. Analysis of the Size Distributions of Fetal and Maternal Cell-Free DNA by Paired-End Sequencing. Clin. Chem. 2010;56:1279–1286. doi: 10.1373/clinchem.2010.144188. PubMed DOI

Leon S.A., Shapiro B., Sklaroff D.M., Yaros M.J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–650. PubMed

Hao T.B., Shi W., Shen X.J., Qi J., Wu X.H., Wu Y., Tang Y.Y., Ju S.Q. Circulating cell-free DNA in serum as a biomarker for diagnosis and prognostic prediction of colorectal cancer. Br. J. Cancer. 2014;111:1482–1489. doi: 10.1038/bjc.2014.470. PubMed DOI PMC

Mohan S., Ayub M., Rothwell D.G., Gulati S., Kilerci B., Hollebecque A., Leong H.S., Smith N.K., Sahoo S., Descamps T., et al. Analysis of circulating cell-free DNA identifies KRAS copy number gain and mutation as a novel prognostic marker in Pancreatic cancer. Sci. Rep. 2019;9:11610–11616. doi: 10.1038/s41598-019-47489-7. PubMed DOI PMC

Janku F., Huang H.J., Claes B., Falchook G.S., Fu S., Hong D., Ramzanali N.M., Nitti G., Cabrilo G., Tsimberidou A.M., et al. BRAF Mutation Testing in Cell-Free DNA from the Plasma of Patients with Advanced Cancers Using a Rapid, Automated Molecular Diagnostics System. Mol. Cancer Ther. 2016;15:1397–1404. doi: 10.1158/1535-7163.MCT-15-0712. PubMed DOI

Hong D.S., Morris V.K., El Osta B., Sorokin A.V., Janku F., Fu S., Overman M.J., Piha-Paul S.A., Subbiah V., Kee B., et al. Phase IB Study of Vemurafenib in Combination with Irinotecan and Cetuximab in Patients with Metastatic Colorectal Cancer with BRAFV600E Mutation. Cancer Discov. 2016;6:1352–1365. doi: 10.1158/2159-8290.CD-16-0050. PubMed DOI PMC

Allard W.J. Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas but not in Healthy Subjects or Patients With Nonmalignant Diseases. Clin. Cancer Res. 2004;10:6897–6904. doi: 10.1158/1078-0432.CCR-04-0378. PubMed DOI

Cohen S.J., Terstappen L.W., Punt C.J., Mitchell E.P., Fynan T.M., Li T., Matera J., Doyle G.V., Meropol N.J. Circulating endothelial cells (CEC) and circulating tumor cells (CTC) in patients (pts) with metastatic colorectal cancer (mCRC) J. Clin. Oncol. 2006;24:3531. doi: 10.1200/jco.2006.24.18_suppl.3531. DOI

De Bono J., Scher H.I., Montgomery R.B., Parker C., Miller M.C., Tissing H., Doyle G., Terstappen L.W., Pienta K.J., Raghavan D. Circulating Tumor Cells Predict Survival Benefit from Treatment in Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2008;14:6302–6309. doi: 10.1158/1078-0432.CCR-08-0872. PubMed DOI

Cristofanilli M., Budd G.T., Ellis M.J., Stopeck A., Matera J., Miller M.C., Reuben J.M., Doyle G.V., Allard W.J., Terstappen L.W.M.M., et al. Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer. N. Engl. J. Med. 2004;351:781–791. doi: 10.1056/NEJMoa040766. PubMed DOI

Negin B.P., Cohen S.J. Circulating Tumor Cells in Colorectal Cancer: Past, Present, and Future Challenges. Curr. Treat. Options Oncol. 2010;11:1–13. doi: 10.1007/s11864-010-0115-3. PubMed DOI

Folkersma L.R., Gómez C.O., Manso L.S.J., De Castro S.V., Romo I.G., Lázaro M.V., De La Orden G.V., Fernández M.A., Rubio E.D., Moyano A.S., et al. Immunomagnetic quantification of circulating tumoral cells in patients with prostate cancer: Clinical and pathological correlation. Arch. Espanoles de Urol. 2010;63:23–31. PubMed

Arrazubi V., Mata E., Antelo M.L., Tarifa A., Herrera J., Zazpe C., Teijeira L., Viudez A., Suárez J., Hernández I., et al. Circulating Tumor Cells in Patients Undergoing Resection of Colorectal Cancer Liver Metastases. Clinical Utility for Long-Term Outcome: A Prospective Trial. Ann. Surg. Oncol. 2019;26:2805–2811. doi: 10.1245/s10434-019-07503-8. PubMed DOI

Keomanee-Dizon K., Shishido S.N., Kuhn P. Methods in Molecular Biology. Volume 215. Springer Science and Business Media LLC; Cham, Switzerland: 2020. Circulating Tumor Cells: High-Throughput Imaging of CTCs and Bioinformatic Analysis; pp. 89–104. PubMed PMC

Gerdtsson A.S., Thiele J.-A., Shishido S.N., Zheng S., Schaffer R., Bethel K., Curley S., Lenz H.-J., Hanna D.L., Nieva J., et al. Single cell correlation analysis of liquid and solid biopsies in metastatic colorectal cancer. Oncotarget. 2019;10:7016–7030. doi: 10.18632/oncotarget.27271. PubMed DOI PMC

Rodriguez-Lee M., Kolatkar A., McCormick M., Dago A.D., Kendall J., Carlsson N.A., Bethel K., Greenspan E.J., Hwang S.E., Waitman K.R., et al. Effect of Blood Collection Tube Type and Time to Processing on the Enumeration and High-Content Characterization of Circulating Tumor Cells Using the High-Definition Single-Cell Assay. Arch. Pathol. Lab. Med. 2018;142:198–207. doi: 10.5858/arpa.2016-0483-OA. PubMed DOI PMC

Thiele J.-A., Bethel K., Kralickova M., Kuhn P. Circulating Tumor Cells: Fluid Surrogates of Solid Tumors. Annu. Rev. Pathol. Mech. Dis. 2017;12:419–447. doi: 10.1146/annurev-pathol-052016-100256. PubMed DOI PMC

Scher H.I., Graf R.P., Schreiber N.A., Jayaram A., Winquist E., McLaughlin B., Lu D., Fleisher M., Orr S., Lowes L., et al. Assessment of the Validity of Nuclear-Localized Androgen Receptor Splice Variant 7 in Circulating Tumor Cells as a Predictive Biomarker for Castration-Resistant Prostate Cancer. JAMA Oncol. 2018;4:1179–1186. doi: 10.1001/jamaoncol.2018.1621. PubMed DOI PMC

Vona G., Sabile A., Louha M., Sitruk V., Romana S.P., Schütze K., Capron F., Franco M., Pazzagli M., Vekemans M., et al. Isolation by Size of Epithelial Tumor Cells. Am. J. Pathol. 2000;156:57–63. doi: 10.1016/S0002-9440(10)64706-2. PubMed DOI PMC

Chinen L., De Carvalho F.M., Rocha B.M.M., Aguiar C.M., Abdallah E.A., Campanha D., Mingues N.B., De Oliveira T.B., Maciel M.S., Cervantes G.M., et al. Cytokeratin-based CTC counting unrelated to clinical follow up. J. Thorac. Dis. 2013;5:593–599. PubMed PMC

Vona G., Beroud C., Benachi A., Quenette A., Bonnefont J., Romana S.P., Dumez Y., Lacour B., Paterlini-Bréchot P. Enrichment, Immunomorphological, and Genetic Characterization of Fetal Cells Circulating in Maternal Blood. Am. J. Pathol. 2002;160:51–58. doi: 10.1016/S0002-9440(10)64348-9. PubMed DOI PMC

e Silva V.S., Chinen L., Abdallah E.A., Damascena A., Paludo J., Chojniak R., Dettino A., De Mello C.A.L., Alves V.S., Fanelli M.F. Early detection of poor outcome in patients with metastatic colorectal cancer: Tumor kinetics evaluated by circulating tumor cells. OncoTargets Ther. 2016;9:7503–7513. doi: 10.2147/OTT.S115268. PubMed DOI PMC

Danila D.C., Samoila A., Patel C., Schreiber N., Herkal A., Anand A., Bastos D., Heller G., Fleisher M., Scher H.I. Clinical Validity of Detecting Circulating Tumor Cells by AdnaTest Assay Compared With Direct Detection of Tumor mRNA in Stabilized Whole Blood, as a Biomarker Predicting Overall Survival for Metastatic Castration-Resistant Prostate Cancer Patients. Cancer J. 2016;22:315–320. doi: 10.1097/PPO.0000000000000220. PubMed DOI PMC

Todenhöfer T., Hennenlotter J., Feyerabend S., Aufderklamm S., Mischinger J., Kühs U., Gerber V., Fetisch J., Schilling D., Hauch S., et al. Preliminary experience on the use of the Adnatest® system for detection of circulating tumor cells in prostate cancer patients. Anticancer Res. 2012;32:3507–3513. PubMed

Wu S., Liu S., Liu Z., Huang J., Pu X., Li J., Yang D., Deng H., Yang N., Xu J. Classification of Circulating Tumor Cells by Epithelial-Mesenchymal Transition Markers. PLoS ONE. 2015;10:e0123976. doi: 10.1371/journal.pone.0123976. PubMed DOI PMC

Zhao R., Cai Z., Li S., Cheng Y., Gao H., Liu F., Wu S., Liu S., Dong Y., Zheng L., et al. Expression and clinical relevance of epithelial and mesenchymal markers in circulating tumor cells from colorectal cancer. Oncotarget. 2016;8:9293–9302. doi: 10.18632/oncotarget.14065. PubMed DOI PMC

Gasiorowski L., Dyszkiewicz W., Zielinski P. In-vivo isolation of circulating tumor cells in non-small cell lung cancer patients by CellCollector. Neoplasma. 2017;64:938–944. doi: 10.4149/neo_2017_618. PubMed DOI

He Y., Shi J., Shi G., Xu X., Liu Q., Liu C., Gao Z., Bai J., Shan B. Using the New CellCollector to Capture Circulating Tumor Cells from Blood in Different Groups of Pulmonary Disease: A Cohort Study. Sci. Rep. 2017;7:9542. doi: 10.1038/s41598-017-09284-0. PubMed DOI PMC

Tsai W.-S., You J.-F., Hung H.-Y., Hsieh P.-S., Hsieh B., Lenz H.-J., Idos G., Friedland S., Pan J.Y.-J., Shao H.-J., et al. Novel Circulating Tumor Cell Assay for Detection of Colorectal Adenomas and Cancer. Clin. Transl. Gastroenterol. 2019;10:e00088. doi: 10.14309/ctg.0000000000000088. PubMed DOI PMC

Gupta P., Gulzar Z., Hsieh B., Lim A., Watson D., Mei R. Analytical validation of the CellMax platform for early detection of cancer by enumeration of rare circulating tumor cells. J. Circ. Biomark. 2019;8:1849454419899214. doi: 10.1177/1849454419899214. PubMed DOI PMC

Jaeger B.A.S., Jueckstock J., Andergassen U., Salmen J., Schochter F., Fink V., Alunni-Fabbroni M., Rezai M., Beck T., Beckmann M.W., et al. Evaluation of Two Different Analytical Methods for Circulating Tumor Cell Detection in Peripheral Blood of Patients with Primary Breast Cancer. BioMed Res. Int. 2014;2014:491459. doi: 10.1155/2014/491459. PubMed DOI PMC

Wang L., Balasubramanian P., Chen A.P., Kummar S., Evrard Y.A., Kinders R.J. Promise and limits of the CellSearch platform for evaluating pharmacodynamics in circulating tumor cells. Semin. Oncol. 2016;43:464–475. doi: 10.1053/j.seminoncol.2016.06.004. PubMed DOI PMC

Bin Lim S., Yeo T., Di Lee W., Bhagat A.A.S., Tan S.J., Tan D.S.W., Lim W.-T., Lim C.T. Addressing cellular heterogeneity in tumor and circulation for refined prognostication. Proc. Natl. Acad. Sci. USA. 2019;116:17957–17962. doi: 10.1073/pnas.1907904116. PubMed DOI PMC

Lee Y., Guan G., Bhagat A.A. ClearCell® FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells. Cytom. Part A. 2018;93:1251–1254. doi: 10.1002/cyto.a.23507. PubMed DOI

Wu W., Zhang Z., Gao X.H., Shen Z., Jing Y., Lu H., Li H., Yang X., Cui X., Li Y., et al. Clinical significance of detecting circulating tumor cells in colorectal cancer using subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) Oncotarget. 2017;8:21639–21649. doi: 10.18632/oncotarget.15452. PubMed DOI PMC

Xu L., Jia S., Li H., Yu Y., Liu G., Wu Y., Liu X., Liu C., Zhou Y., Zhang Z., et al. Characterization of circulating tumor cells in newly diagnosed breast cancer. Oncol. Lett. 2017;15:2522–2528. doi: 10.3892/ol.2017.7540. PubMed DOI PMC

D’Oronzo S., Lovero D., Palmirotta R., Stucci L.S., Tucci M., Felici C., Cascardi E., Giardina C., Cafforio P., Silvestris F. Dissection of major cancer gene variants in subsets of circulating tumor cells in advanced breast cancer. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-53660-x. PubMed DOI PMC

Kondo Y., Hayashi K., Kawakami K., Miwa Y., Hayashi H., Yamamoto M. KRAS mutation analysis of single circulating tumor cells from patients with metastatic colorectal cancer. BMC Cancer. 2017;17:311. doi: 10.1186/s12885-017-3305-6. PubMed DOI PMC

Liu Z., Fusi A., Klopocki E., Schmittel A., Tinhofer I., Nonnemacher A., Keilholz U. Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients. J. Transl. Med. 2011;9:70. doi: 10.1186/1479-5876-9-70. PubMed DOI PMC

Awasthi N.P., Kumari S., Neyaz A., Gupta S., Agarwal A., Singhal A., Husain N. EpCAM-based Flow Cytometric Detection of Circulating Tumor Cells in Gallbladder Carcinoma Cases. Asian Pac. J. Cancer Prev. 2017;18:3429–3437. PubMed PMC

Stott S.L., Hsu C.-H., Tsukrov D.I., Yu M., Miyamoto D.T., Waltman B.A., Rothenberg S.M., Shah A.M., Smas M.E., Korir G.K., et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA. 2010;107:18392–18397. doi: 10.1073/pnas.1012539107. PubMed DOI PMC

Xue P., Ye K., Gao J., Wu Y., Guo J., Hui K.M., Kang Y. Isolation and elution of Hep3B circulating tumor cells using a dual-functional herringbone chip. Microfluid. Nanofluid. 2013;16:605–612. doi: 10.1007/s10404-013-1250-5. DOI

Castle J., Morris K., Pritchard S., Kirwan C.C. Challenges in enumeration of CTCs in breast cancer using techniques independent of cytokeratin expression. PLoS ONE. 2017;12:e0175647. doi: 10.1371/journal.pone.0175647. PubMed DOI PMC

Farace F., Massard C., Vimond N., Drusch F., Jacques N., Billiot F., Laplanche A., Chauchereau A., Lacroix L., Planchard D., et al. A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br. J. Cancer. 2011;105:847–853. doi: 10.1038/bjc.2011.294. PubMed DOI PMC

Cann G.M., Gulzar Z.G., Cooper S., Li R., Luo S., Tat M., Stuart S., Schroth G., Srinivas S., Ronaghi M., et al. mRNA-Seq of Single Prostate Cancer Circulating Tumor Cells Reveals Recapitulation of Gene Expression and Pathways Found in Prostate Cancer. PLoS ONE. 2012;7:e49144. doi: 10.1371/journal.pone.0049144. PubMed DOI PMC

Deng G., Krishnakumar S., Powell A.A., Zhang H., Mindrinos M., Telli M.L., Davis R.W., Jeffrey S.S. Single cell mutational analysis of PIK3CA in circulating tumor cells and metastases in breast cancer reveals heterogeneity, discordance, and mutation persistence in cultured disseminated tumor cells from bone marrow. BMC Cancer. 2014;14:456. doi: 10.1186/1471-2407-14-456. PubMed DOI PMC

Bobek V., Matkowski R., Gürlich R., Grabowski K., Szelachowska J., Lischke R., Schutzner J., Harustiak T., Pazdro A., Rzechonek A., et al. Cultivation of circulating tumor cells in esophageal cancer. Folia Histochem. Cytobiol. 2014;52:171–177. doi: 10.5603/FHC.2014.0020. PubMed DOI

Kolostova K., Matkowski R., Jędryka M., Soter K., Cegan M., Pinkas M., Jakabova A., Pavlasek J., Spicka J., Bobek V. The added value of circulating tumor cells examination in ovarian cancer staging. Am. J. Cancer Res. 2015;5:3363–3375. PubMed PMC

Gertler R., Rosenberg R., Fuehrer K., Dahm M., Nekarda H., Siewert J.R. Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. Methods Mol. Biol. 2003;162:149–155. doi: 10.1007/978-3-642-59349-9_13. PubMed DOI

Kaifi J.T., Kunkel M., Das A., Harouaka R., Dicker D.T., Li G., Zhu J., Clawson G.A., Yang Z., Reed M.F., et al. Circulating tumor cell isolation during resection of colorectal cancer lung and liver metastases: A prospective trial with different detection techniques. Cancer Biol. Ther. 2015;16:699–708. doi: 10.1080/15384047.2015.1030556. PubMed DOI PMC

Schwarzenbach H., Stoehlmacher J., Pantel K., Goekkurt E. Detection and Monitoring of Cell-Free DNA in Blood of Patients with Colorectal Cancer. Ann. N. Y. Acad. Sci. 2008;1137:190–196. doi: 10.1196/annals.1448.025. PubMed DOI

Czeiger D., Shaked G., Eini H., Vered I., Belochitski O., Avriel A., Ariad S., Douvdevani A. Measurement of Circulating Cell-Free DNA Levels by a New Simple Fluorescent Test in Patients With Primary Colorectal Cancer. Am. J. Clin. Pathol. 2011;135:264–270. doi: 10.1309/AJCP4RK2IHVKTTZV. PubMed DOI

Beaver J.A., Jelovac D., Balukrishna S., Cochran R.L., Croessmann S., Zabransky D.J., Wong H.Y., Toro P.V., Cidado J., Blair B.G., et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin. Cancer Res. 2014;20:2643–2650. doi: 10.1158/1078-0432.CCR-13-2933. PubMed DOI PMC

Baslan T., Kendall J., Ward B., Cox H., Leotta A., Rodgers L., Riggs M., D’Italia S., Sun G., Yong M., et al. Optimizing sparse sequencing of single cells for highly multiplex copy number profiling. Genome Res. 2015;25:714–724. doi: 10.1101/gr.188060.114. PubMed DOI PMC

Glenn T.C. Field guide to next?generation DNA sequencers. Mol. Ecol. Resour. 2011;11:759–769. doi: 10.1111/j.1755-0998.2011.03024.x. PubMed DOI

Molparia B., Oliveira G., Wagner J.L., Spencer E.G., Torkamani A. A feasibility study of colorectal cancer diagnosis via circulating tumor DNA derived CNV detection. PLoS ONE. 2018;13:e0196826. doi: 10.1371/journal.pone.0196826. PubMed DOI PMC

Li J., Dittmar R., Xia S., Zhang H., Du M., Huang C., Druliner B.R., Boardman L., Wang L. Cell-free DNA copy number variations in plasma from colorectal cancer patients. Mol. Oncol. 2017;11:1099–1111. doi: 10.1002/1878-0261.12077. PubMed DOI PMC

Birkenkamp-Demtröder K., Nordentoft I.K., Christensen E., Høyer S., Reinert T., Vang S., Borre M., Agerbæk M., Jensen J.B., Ørntoft T.F., et al. Genomic Alterations in Liquid Biopsies from Patients with Bladder Cancer. Eur. Urol. 2016;70:75–82. doi: 10.1016/j.eururo.2016.01.007. PubMed DOI

Zonta E., Garlan F., Pécuchet N., Perez-Toralla K., Caen O., Milbury C., Didelot A., Fabre E., Blons H., Laurent-Puig P., et al. Multiplex Detection of Rare Mutations by Picoliter Droplet Based Digital PCR: Sensitivity and Specificity Considerations. PLoS ONE. 2016;11:e0159094. doi: 10.1371/journal.pone.0159094. PubMed DOI PMC

Dressman D., Yan H., Traverso G., Kinzler K.W., Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl. Acad. Sci. USA. 2003;100:8817–8822. doi: 10.1073/pnas.1133470100. PubMed DOI PMC

Schmiegel W.H., Scott R.J., Dooley S., Lewis W., Meldrum C.J., Pockney P.G., Draganic B., Smith S., Hewitt C., Philimore H., et al. Blood-based detection ofRASmutations to guide anti-EGFR therapy in colorectal cancer patients: Concordance of results from circulating tumor DNA and tissue-basedRAStesting. Mol. Oncol. 2017;11:208–219. doi: 10.1002/1878-0261.12023. PubMed DOI PMC

Taly V., Pekin D., Benhaim L., Kotsopoulos S.K., Le Corre D., Li X., Atochin I., Link D.R., Griffiths A.D., Pallier K., et al. Multiplex Picodroplet Digital PCR to Detect KRAS Mutations in Circulating DNA from the Plasma of Colorectal Cancer Patients. Clin. Chem. 2013;59:1722–1731. doi: 10.1373/clinchem.2013.206359. PubMed DOI

Zhu G., Ye X., Dong Z., Lu Y.C., Sun Y., Liu Y., McCormack R., Gu Y., Liu X. Highly Sensitive Droplet Digital PCR Method for Detection of EGFR-Activating Mutations in Plasma Cell–Free DNA from Patients with Advanced Non–Small Cell Lung Cancer. J. Mol. Diagn. 2015;17:265–272. doi: 10.1016/j.jmoldx.2015.01.004. PubMed DOI

Hughesman C.B., Lu X.J.D., Liu K.Y.P., Zhu Y., Towle R.M., Haynes C., Poh C.F. Detection of clinically relevant copy number alterations in oral cancer progression using multiplexed droplet digital PCR. Sci. Rep. 2017;7:11855. doi: 10.1038/s41598-017-11201-4. PubMed DOI PMC

Gale D., Lawson A.R.J., Howarth K., Madi M., Durham B., Smalley S., Calaway J., Blais S., Jones G., Clark J., et al. Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA. PLoS ONE. 2018;13:e0194630. doi: 10.1371/journal.pone.0194630. PubMed DOI PMC

Forshew T., Murtaza M., Parkinson C., Gale D., Tsui D.W.Y., Kaper F., Dawson S.-J., Piskorz A.M., Jimenez-Linan M., Bentley D., et al. Noninvasive Identification and Monitoring of Cancer Mutations by Targeted Deep Sequencing of Plasma DNA. Sci. Transl. Med. 2012;4:136ra68. doi: 10.1126/scitranslmed.3003726. PubMed DOI

Kennedy S.R., Schmitt M.W., Fox E., Kohrn B.F., Salk J.J., Ahn E.H., Prindle M.J., Kuong K.J., Shen J.-C., Risques R.-A., et al. Detecting ultralow-frequency mutations by Duplex Sequencing. Nat. Protoc. 2014;9:2586–2606. doi: 10.1038/nprot.2014.170. PubMed DOI PMC

Iwahashi N., Sakai K., Noguchi T., Yahata T., Matsukawa H., Toujima S., Nishio K., Ino K. Liquid biopsy-based comprehensive gene mutation profiling for gynecological cancer using CAncer Personalized Profiling by deep Sequencing. Sci. Rep. 2019;9:10426. doi: 10.1038/s41598-019-47030-w. PubMed DOI PMC

Kinde I., Wu J., Papadopoulos N., Kinzler K.W., Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. USA. 2011;108:9530–9535. doi: 10.1073/pnas.1105422108. PubMed DOI PMC

Newman A.M., Bratman S.V., To J., Wynne J.F., Eclov N.C.W., Modlin L.A., Liu C.L., Neal J.W., Wakelee H.A., Merritt R.E., et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 2014;20:548–554. doi: 10.1038/nm.3519. PubMed DOI PMC

Newman A.M., Lovejoy A.F., Klass D.M., Kurtz D.M., Chabon J.J., Scherer F., Stehr H., Liu C.L., Bratman S.V., Say C., et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 2016;34:547–555. doi: 10.1038/nbt.3520. PubMed DOI PMC

Fredebohm J., Mehnert D.H., Löber A.-K., Holtrup F., Van Rahden V., Angenendt P., Diehl F. Detection and Quantification of KIT Mutations in ctDNA by Plasma Safe-SeqS. Volume 924. Springer Science and Business Media LLC; Cham, Switzerland: 2016. pp. 187–189. PubMed

Zheng H., Ladouceur M., Greenwood C.M.T., Richards J.B. Effect of Genome-Wide Genotyping and Reference Panels on Rare Variants Imputation. J. Genet. Genome. 2012;39:545–550. doi: 10.1016/j.jgg.2012.07.002. PubMed DOI

Devos T., Tetzner R., Model F., Weiss G., Schuster M., Distler J., Steiger K.V., Grützmann R., Pilarsky C., Habermann J.K., et al. Circulating Methylated SEPT9 DNA in Plasma Is a Biomarker for Colorectal Cancer. Clin. Chem. 2009;55:1337–1346. doi: 10.1373/clinchem.2008.115808. PubMed DOI

Warren J.D., Xiong W., Bunker A.M., Vaughn C.P., Furtado L.V., Owen W.E., Fang J., Samowitz W.S., Heichman K.A. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 2011;9:133. doi: 10.1186/1741-7015-9-133. PubMed DOI PMC

Solassol J., Vendrell J., Märkl B., Haas C., Bellosillo B., Montagut C., Smith M., O’Sullivan B., D’Haene N., Le Mercier M., et al. Multi-Center Evaluation of the Fully Automated PCR-Based Idylla™ KRAS Mutation Assay for Rapid KRAS Mutation Status Determination on Formalin-Fixed Paraffin-Embedded Tissue of Human Colorectal Cancer. PLoS ONE. 2016;11:e0163444. doi: 10.1371/journal.pone.0163444. PubMed DOI PMC

Zwaenepoel K., Duelund J.H., De Winne K., Maes V., Weyn C., Lambin S., Dendooven R., Broeckx G., Steiniche T., Pauwels P. Clinical Performance of the Idylla MSI Test for a Rapid Assessment of the DNA Microsatellite Status in Human Colorectal Cancer. J. Mol. Diagn. 2020;22:386–395. doi: 10.1016/j.jmoldx.2019.12.002. PubMed DOI

García-Foncillas J., Tabernero J., Élez E., Aranda E., Benavides M., Camps C., Jantus-Lewintre E., López R., Muinelo-Romay L., Montagut C., et al. Prospective multicenter real-world RAS mutation comparison between OncoBEAM-based liquid biopsy and tissue analysis in metastatic colorectal cancer. Br. J. Cancer. 2018;119:1464–1470. doi: 10.1038/s41416-018-0293-5. PubMed DOI PMC

Wan N., Weinberg D., Liu T.-Y., Niehaus K., Delubac D., Kannan A., White B., Ariazi E.A., Bailey M., Bertin M., et al. Su1658–Machine Learning Enables Detection of Early-Stage Colorectal Cancer by Whole-Genome Sequencing of Plasma Cell-Free Dna. Gastroenterology. 2019;156:832. doi: 10.1016/S0016-5085(19)38396-9. PubMed DOI PMC

Russo M., Siravegna G., Blaszkowsky L.S., Corti G., Crisafulli G., Ahronian L.G., Mussolin B., Kwak E.L., Buscarino M., Lazzari L., et al. Abstract 878: Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Exp. Mol. Ther. 2016;76:878. doi: 10.1158/1538-7445.am2016-878. PubMed DOI PMC

Diehl F., Schmidt K., Choti M.A., Romans K., Goodman S., Li M., Thornton K., Agrawal N., Sokoll L., Szabo S.A., et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2007;14:985–990. doi: 10.1038/nm.1789. PubMed DOI PMC

Iwanicki-Caron I., Di Fiore F., Roque I., Astruc E., Stetiu M., Duclos A., Tougeron D., Saillard S., Thureau S., Benichou J., et al. Usefulness of the Serum Carcinoembryonic Antigen Kinetic for Chemotherapy Monitoring in Patients With Unresectable Metastasis of Colorectal Cancer. J. Clin. Oncol. 2008;26:3681–3686. doi: 10.1200/JCO.2007.15.0904. PubMed DOI

Li M., Li J.-Y., Zhao A.-L., He J.-S., Zhou L.-X., Li Y.-A., Gu J. Comparison of carcinoembryonic antigen prognostic value in serum and tumour tissue of patients with colorectal cancer. Color. Dis. 2009;11:276–281. doi: 10.1111/j.1463-1318.2008.01591.x. PubMed DOI PMC

Yang K.M., Park I.J., Kim C.W., Roh S.A., Cho D.-H., Kim J.C. The prognostic significance and treatment modality for elevated pre- and postoperative serum CEA in colorectal cancer patients. Ann. Surg. Treat. Res. 2016;91:165–171. doi: 10.4174/astr.2016.91.4.165. PubMed DOI PMC

Sun Z., Wang F., Zhou Q., Yang S., Sun X., Wang G., Li Z., Zhang Z., Song J., Liu J., et al. Pre-operative to post-operative serum carcinoembryonic antigen ratio is a prognostic indicator in colorectal cancer. Oncotarget. 2017;8:54672–54682. doi: 10.18632/oncotarget.17931. PubMed DOI PMC

Imperiale T.F., Ransohoff D.F., Itzkowitz S.H., Brenner H., Werner S., Chen H., Senore C., Segnan N., Lee J.K., Terdiman J.P., et al. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014;371:187–188. doi: 10.1056/NEJMoa1311194. PubMed DOI

Song L., Jia J., Peng X., Xiao W., Li Y. The performance of the SEPT9 gene methylation assay and a comparison with other CRC screening tests: A meta-analysis. Sci. Rep. 2017;7:3032. doi: 10.1038/s41598-017-03321-8. PubMed DOI PMC

Church T.R., Wandell M., Lofton-Day C., Mongin S.J., Burger M., Payne S.R., Castanos-Velez E., Blumenstein B.A., Rösch T., Osborn N., et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2013;63:317–325. doi: 10.1136/gutjnl-2012-304149. PubMed DOI PMC

Lee K.H., Kim J.S., Lee C.S., Kim J.-Y. KRAS discordance between primary and recurrent tumors after radical resection of colorectal cancers. J. Surg. Oncol. 2015;111:1059–1064. doi: 10.1002/jso.23936. PubMed DOI

Fabbri F., Carloni S., Zoli W., Ulivi P., Gallerani G., Fici P., Chiadini E., Passardi A., Frassineti G.L., Ragazzini A., et al. Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett. 2013;335:225–231. doi: 10.1016/j.canlet.2013.02.015. PubMed DOI

Russo M., Crisafulli G., Sogari A., Reilly N.M., Arena S., Lamba S., Bartolini A., Amodio V., Magrì A., Novara L., et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science. 2019;366:1473–1480. doi: 10.1126/science.aav4474. PubMed DOI

Bardelli A., Siena S. Molecular Mechanisms of Resistance to Cetuximab and Panitumumab in Colorectal Cancer. J. Clin. Oncol. 2010;28:1254–1261. doi: 10.1200/JCO.2009.24.6116. PubMed DOI

Luo H., Zhao Q., Wei W., Zheng L., Yi S., Li G., Wang W., Sheng H., Pu H., Mo H., et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci. Transl. Med. 2020;12:eaax7533. doi: 10.1126/scitranslmed.aax7533. PubMed DOI

Aravanis A.M., Lee M., Klausner R.D. Next-Generation Sequencing of Circulating Tumor DNA for Early Cancer Detection. Cell. 2017;168:571–574. doi: 10.1016/j.cell.2017.01.030. PubMed DOI

Cohen J.D., Li L., Wang Y., Thoburn C., Afsari B., Danilova L.V., Douville C., Javed A.A., Wong F., Mattox A., et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–930. doi: 10.1126/science.aar3247. PubMed DOI PMC

Kolostova K., Matkowski R., Gürlich R., Grabowski K., Soter K., Lischke R., Schutzner J., Bobek V. Detection and cultivation of circulating tumor cells in gastric cancer. Cytotechnology. 2015;68:1095–1102. doi: 10.1007/s10616-015-9866-9. PubMed DOI PMC

Eliášová P., Pinkas M., Kolostova K., Gürlich R., Bobek V. Circulating tumor cells in different stages of colorectal cancer. Folia Histochem. Cytobiol. 2017;55:1–5. doi: 10.5603/FHC.a2017.0005. PubMed DOI

De Macedo M.P., De Melo F.M., Ribeiro J.D.S.S., De Mello C.A.L., Begnami M.D.F.D.S., Soares F.A., Carraro D.M., Cunha I.W. RAS mutations vary between lesions in synchronous primary Colorectal Cancer: Testing only one lesion is not sufficient to guide anti-EGFR treatment decisions. Oncoscience. 2015;2:125. doi: 10.18632/oncoscience.118. PubMed DOI PMC

Morelli M.P., Overman M.J., Dasari A., Kazmi S.M.A., Mazard T., Vilar E., Morris V.K., Lee M.S., Herron D., Eng C., et al. Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti-EGFR treatment. Ann. Oncol. 2015;26:731–736. doi: 10.1093/annonc/mdv005. PubMed DOI PMC

Vidal J., Muinelo L., Dalmases A., Jones F., Edelstein D., Iglesias M., Orrillo M., Abalo A., Rodríguez C., Brozos E., et al. Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients. Ann. Oncol. 2017;28:1325–1332. doi: 10.1093/annonc/mdx125. PubMed DOI PMC

Thierry A., Pastor B., Jiang Z.-Q., Katsiampoura A.D., Parseghian C., Loree J., Overman M.J., Sanchez C., El Messaoudi S., Ychou M., et al. Circulating DNA Demonstrates Convergent Evolution and Common Resistance Mechanisms during Treatment of Colorectal Cancer. Clin. Cancer Res. 2017;23:4578–4591. doi: 10.1158/1078-0432.CCR-17-0232. PubMed DOI PMC

Khan K., Cunningham D., Werner B., Vlachogiannis G., Spiteri I., Heide T., Mateos J.F., Vatsiou A., Lampis A., Damavandi M.D., et al. Longitudinal Liquid Biopsy and Mathematical Modeling of Clonal Evolution Forecast Time to Treatment Failure in the PROSPECT-C Phase II Colorectal Cancer Clinical Trial. Cancer Discov. 2018;8:1270–1285. doi: 10.1158/2159-8290.CD-17-0891. PubMed DOI PMC

Klein-Scory S., Maslova M., Pohl M., Eilert-Micus C., Schroers R., Schmiegel W., Baraniskin A. Significance of Liquid Biopsy for Monitoring and Therapy Decision of Colorectal Cancer. Transl. Oncol. 2018;11:213–220. doi: 10.1016/j.tranon.2017.12.010. PubMed DOI PMC

Bin Kuo Y., Chen J.-S., Fan C.-W., Li Y.-S., Chan E.-C. Comparison of KRAS mutation analysis of primary tumors and matched circulating cell-free DNA in plasmas of patients with colorectal cancer. Clin. Chim. Acta. 2014;433:284–289. doi: 10.1016/j.cca.2014.03.024. PubMed DOI

Bettegowda C., Sausen M., Leary R.J., Kinde I., Wang Y., Agrawal N., Bartlett B.R., Wang H., Luber B., Alani R.M., et al. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Sci. Transl. Med. 2014;6:224ra24. doi: 10.1126/scitranslmed.3007094. PubMed DOI PMC

Iwai T., Yamada T., Takahashi G., Takeda K., Koizumi M., Shinji S., Matsuda A., Yokoyama Y., Hara K., Ueda K., et al. Circulating cell-free long DNA fragments predict post-hepatectomy recurrence of colorectal liver metastases. Eur. J. Surg. Oncol. (EJSO) 2020;46:108–114. doi: 10.1016/j.ejso.2019.08.010. PubMed DOI

Rahbari N.N., Aigner M., Thorlund K., Mollberg N., Motschall E., Jensen K., Diener M.K., Büchler M.W., Koch M., Weitz J. Meta-analysis Shows That Detection of Circulating Tumor Cells Indicates Poor Prognosis in Patients With Colorectal Cancer. Gastroenterology. 2010;138:1714–1726.e13. doi: 10.1053/j.gastro.2010.01.008. PubMed DOI

Spindler K.-L.G., Appelt A.L., Pallisgaard N., Andersen R.F., Brandslund I., Jakobsen A. Cell-free DNA in healthy individuals, noncancerous disease and strong prognostic value in colorectal cancer. Int. J. Cancer. 2014;135:2984–2991. doi: 10.1002/ijc.28946. PubMed DOI

Tan Y., Wu H. The significant prognostic value of circulating tumor cells in colorectal cancer: A systematic review and meta-analysis. Curr. Probl. Cancer. 2018;42:95–106. doi: 10.1016/j.currproblcancer.2017.11.002. PubMed DOI

Spindler K.-L.G., Pallisgaard N., Andersen R.F., Brandslund I., Jakobsen A. Circulating Free DNA as Biomarker and Source for Mutation Detection in Metastatic Colorectal Cancer. PLoS ONE. 2015;10:e0108247. doi: 10.1371/journal.pone.0108247. PubMed DOI PMC

Reinert T., Henriksen T.V., Christensen E., Sharma S., Salari R., Sethi H., Knudsen M., Nordentoft I.K., Wu H.-T., Tin A.S., et al. Analysis of Plasma Cell-Free DNA by Ultradeep Sequencing in Patients With Stages I to III Colorectal Cancer. JAMA Oncol. 2019;5:1124. doi: 10.1001/jamaoncol.2019.0528. PubMed DOI PMC

Cohen S.J., Punt C.J., Iannotti N., Saidman B.H., Sabbath K.D., Gabrail N.Y., Picus J., Morse M., Mitchell E., Miller M.C., et al. Relationship of Circulating Tumor Cells to Tumor Response, Progression-Free Survival, and Overall Survival in Patients With Metastatic Colorectal Cancer. J. Clin. Oncol. 2008;26:3213–3221. doi: 10.1200/JCO.2007.15.8923. PubMed DOI

Connor A.A., McNamara K., Al-Sukhni E., Diskin J., Chan D., Ash C., Lowes L.E., Allan A., Zogopoulos G., Moulton C.-A., et al. Central, But Not Peripheral, Circulating Tumor Cells are Prognostic in Patients Undergoing Resection of Colorectal Cancer Liver Metastases. Ann. Surg. Oncol. 2015;23:2168–2175. doi: 10.1245/s10434-015-5038-6. PubMed DOI

Dizdar L., Flügen G., Van Dalum G., Honisch E., Neves R.P., Niederacher D., Neubauer H., Fehm T., Rehders A., Krieg A., et al. Detection of circulating tumor cells in colorectal cancer patients using the GILUPI CellCollector: Results from a prospective, single-center study. Mol. Oncol. 2019;13:1548–1558. doi: 10.1002/1878-0261.12507. PubMed DOI PMC

Wong D., Moturi S., Angkachatchai V., Mueller R., DeSantis G., Boom D.V.D., Ehrich M. Optimizing blood collection, transport and storage conditions for cell free DNA increases access to prenatal testing. Clin. Biochem. 2013;46:1099–1104. doi: 10.1016/j.clinbiochem.2013.04.023. PubMed DOI

Grölz D., Hauch S., Schlumpberger M., Guenther K., Voss T., Sprenger-Haussels M., Oelmüller U. Liquid Biopsy Preservation Solutions for Standardized Pre-Analytical Workflows—Venous Whole Blood and Plasma. Curr. Pathobiol. Rep. 2018;6:275–286. doi: 10.1007/s40139-018-0180-z. PubMed DOI PMC

Neumann M.H., Bender S., Krahn T., Schlange T. ctDNA and CTCs in Liquid Biopsy – Current Status and Where We Need to Progress. Comput. Struct. Biotechnol. J. 2018;16:190–195. doi: 10.1016/j.csbj.2018.05.002. PubMed DOI PMC

Witzig T.E., Bossy B., Kimlinger T., Roche P.C., Ingle J.N., Grant C., Donohue J., Suman V.J., Harrington D., Torre-Bueno J., et al. Detection of circulating cytokeratin-positive cells in the blood of breast cancer patients using immunomagnetic enrichment and digital microscopy. Clin. Cancer Res. 2002;8:1085–1091. PubMed

Hardingham J., Grover P., Winter M., Hewett P.J., Price T.J., Thierry B. Detection and Clinical Significance of Circulating Tumor Cells in Colorectal Cancer—20 Years of Progress. Mol. Med. 2015;21:S25–S31. doi: 10.2119/molmed.2015.00149. PubMed DOI PMC

Yang J., Mani S.A., Donaher J.L., Ramaswamy S., Itzykson R.A., Come C., Savagner P., Gitelman I., Richardson A., Weinberg R.A. Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis. Cell. 2004;117:927–939. doi: 10.1016/j.cell.2004.06.006. PubMed DOI

Torga G., Pienta K.J. Patient-Paired Sample Congruence between 2 Commercial Liquid Biopsy Tests. JAMA Oncol. 2018;4:868–870. doi: 10.1001/jamaoncol.2017.4027. PubMed DOI PMC

Vivancos A., Aranda E., Benavides M., Élez E., Gómez-España M.A., Toledano M., Alvarez M., Parrado M.R.C., García-Barberán V., Diaz-Rubio E. Comparison of the Clinical Sensitivity of the Idylla Platform and the OncoBEAM RAS CRC Assay for KRAS Mutation Detection in Liquid Biopsy Samples. Sci. Rep. 2019;9:8976. doi: 10.1038/s41598-019-45616-y. PubMed DOI PMC

Scher H.I., Morris M.J., Larson S., Heller G. Validation and clinical utility of prostate cancer biomarkers. Nat. Rev. Clin. Oncol. 2013;10:225–234. doi: 10.1038/nrclinonc.2013.30. PubMed DOI PMC

Pantel K., Hille C., Scher H.I. Circulating Tumor Cells in Prostate Cancer: From Discovery to Clinical Utility. Clin. Chem. 2019;65:87–99. doi: 10.1373/clinchem.2018.287102. PubMed DOI

Parkinson D.R., McCormack R.T., Keating S.M., Gutman S.I., Hamilton S.R., Mansfield E.A., Piper M.A., Deverka P., Frueh F.W., Jessup J.M., et al. Evidence of Clinical Utility: An Unmet Need in Molecular Diagnostics for Patients with Cancer. Clin. Cancer Res. 2014;20:1428–1444. doi: 10.1158/1078-0432.CCR-13-2961. PubMed DOI

Toledo R.A., Cubillo A., Vega E., Garralda E., Alvarez R., De La Varga L.U., Rodriguez-Pascual J., Sanchez G., Sarno F., Prieto S.H., et al. Clinical validation of prospective liquid biopsy monitoring in patients with wild-type RAS metastatic colorectal cancer treated with FOLFIRI-cetuximab. Oncotarget. 2016;8:35289–35300. doi: 10.18632/oncotarget.13311. PubMed DOI PMC

Palmirotta R., Lovero D., Silvestris E., Felici C., Quaresmini D., Cafforio P., Silvestris F. Next-generation Sequencing (NGS) Analysis on Single Circulating Tumor Cells (CTCs) with No Need of Whole-genome Amplification (WGA) Cancer Genom.-Proteom. 2017;14:173–179. doi: 10.21873/cgp.20029. PubMed DOI PMC

Ulz P., Heitzer E., Geigl J.B., Speicher M.R. Patient monitoring through liquid biopsies using circulating tumor DNA. Int. J. Cancer. 2017;141:887–896. doi: 10.1002/ijc.30759. PubMed DOI

Misale S., Di Nicolantonio F., Sartore-Bianchi A., Siena S., Bardelli A. Resistance to Anti-EGFR Therapy in Colorectal Cancer: From Heterogeneity to Convergent Evolution. Cancer Discov. 2014;4:1269–1280. doi: 10.1158/2159-8290.CD-14-0462. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Defining A Liquid Biopsy Profile of Circulating Tumor Cells and Oncosomes in Metastatic Colorectal Cancer for Clinical Utility

. 2022 Oct 06 ; 14 (19) : . [epub] 20221006

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace