Liquid Biopsy in Colorectal Carcinoma: Clinical Applications and Challenges
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Kolencik D
Fulbright Czech Republic and US
PubMed
32471160
PubMed Central
PMC7352156
DOI
10.3390/cancers12061376
PII: cancers12061376
Knihovny.cz E-zdroje
- Klíčová slova
- CRC, CTC, cfDNA, circulating free DNA, circulating tumor DNA, circulating tumor cell, colorectal carcinoma, ctDNA, liquid biopsy, precision medicine,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Colorectal carcinoma (CRC) is characterized by wide intratumor heterogeneity with general genomic instability and there is a need for improved diagnostic, prognostic, and therapeutic tools. The liquid biopsy provides a noninvasive route of sample collection for analysis of circulating tumor cells (CTCs) and genomic material, including cell-free DNA (cfDNA), as a complementary biopsy to the solid tumor tissue. The solid biopsy is critical for molecular characterization and diagnosis at the time of collection. The liquid biopsy has the advantage of longitudinal molecular characterization of the disease, which is crucial for precision medicine and patient-oriented treatment. In this review, we provide an overview of CRC and the different methodologies for the detection of CTCs and cfDNA, followed by a discussion on the potential clinical utility of the liquid biopsy in CRC patient care, and lastly, current challenges in the field.
Zobrazit více v PubMed
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Arnold M., Sierra M.S., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2016;66:683–691. doi: 10.1136/gutjnl-2015-310912. PubMed DOI
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA A Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551. PubMed DOI
Araghi M., Soerjomataram I., Jenkins M.A., Brierley J., Morris E., Bray F., Arnold M. Global trends in colorectal cancer mortality: Projections to the year 2035. Int. J. Cancer. 2019;144:2992–3000. doi: 10.1002/ijc.32055. PubMed DOI
Sharp L., O’Leary E., O’Ceilleachair A., Skally M., Hanly P. Financial Impact of Colorectal Cancer and Its Consequences. Dis. Colon Rectum. 2018;61:27–35. doi: 10.1097/DCR.0000000000000923. PubMed DOI
John S.K.P., George S., Primrose J.N., Fozard J.B.J. Symptoms and signs in patients with colorectal cancer. Color. Dis. 2010;13:17–25. doi: 10.1111/j.1463-1318.2010.02221.x. PubMed DOI
Uraoka T., Hosoe N., Yahagi N. Colonoscopy: Is it as effective as an advanced diagnostic tool for colorectal cancer screening? Expert Rev. Gastroenterol. Hepatol. 2014;9:129–132. doi: 10.1586/17474124.2015.960397. PubMed DOI
Baek S.K. Laterality: Right-Sided and Left-Sided Colon Cancer. Ann. Coloproctol. 2017;33:205–206. doi: 10.3393/ac.2017.33.6.205. PubMed DOI PMC
Helvaci K., Eraslan E., Yildiz F., Tufan G., Demirci U., Berna Oksuzoglu O., Yalcintas Arslan U. Comparison of clinicopathological and survival features of right and left colon cancers. J. BUON Off. J. Balk. Union Oncol. 2019;24:1845–1851. PubMed
Mik M., Dziki Ł., Trzciński R. Risk factors of 30-day mortality following surgery for colorectal cancer. Pol. J. Surg. 2016;88:26–31. doi: 10.1515/pjs-2016-0023. PubMed DOI
Doubeni C.A., Corley D.A., Quinn V.P., Jensen C.D., Zauber A.G., Goodman M., Johnson J.R., Mehta S.J., Becerra T.A., Zhao W.K., et al. Effectiveness of screening colonoscopy in reducing the risk of death from right and left colon cancer: A large community-based study. Gut. 2016;67:291–298. doi: 10.1136/gutjnl-2016-312712. PubMed DOI PMC
Nawa T., Kato J., Kawamoto H., Okada H., Yamamoto H., Kohno H., Endo H., Shiratori Y. Differences between right- and left-sided colon cancer in patient characteristics, cancer morphology and histology. J. Gastroenterol. Hepatol. 2008;23:418–423. doi: 10.1111/j.1440-1746.2007.04923.x. PubMed DOI
Richman S.D., Chambers P., Seymour M.T., Daly C., Grant S., Hemmings G., Quirke P. Intra-tumoral Heterogeneity of KRAS and BRAF Mutation Status in Patients with Advanced Colorectal Cancer (aCRC) and Cost-Effectiveness of Multiple Sample Testing. Anal. Cell. Pathol. 2011;34:61–66. doi: 10.1155/2011/393521. PubMed DOI PMC
Smith G., Carey F.A., Beattie J., Wilkie M.J.V., Lightfoot T.J., Coxhead J., Garner R.C., Steele R.J., Wolf C.R. Mutations in APC, Kirsten-ras, and p53—Alternative genetic pathways to colorectal cancer. Proc. Natl. Acad. Sci. USA. 2002;99:9433–9438. doi: 10.1073/pnas.122612899. PubMed DOI PMC
Ionov Y., Peinado M.A., Malkhosyan S., Shibata D., Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–561. doi: 10.1038/363558a0. PubMed DOI
Samowitz W.S. Poor Survival Associated with the BRAF V600E Mutation in Microsatellite-Stable Colon Cancers. Cancer Res. 2005;65:6063–6069. doi: 10.1158/0008-5472.CAN-05-0404. PubMed DOI
Shen L., Catalano P.J., Benson A.B., O’Dwyer P., Hamilton S.R., Issa J.-P. Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil based chemotherapy. Clin. Cancer Res. 2007;13:6093–6098. doi: 10.1158/1078-0432.CCR-07-1011. PubMed DOI PMC
Weisenberger D.J., Siegmund K.D., Campan M., Young J., Long T.I., Faasse M., Kang G., Widschwendter M., Weener D., Buchanan D., et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 2006;38:787–793. doi: 10.1038/ng1834. PubMed DOI
Hadjihannas M.V., Brückner M., Jerchow B., Birchmeier W., Dietmaier W., Behrens J. Aberrant Wnt/beta-catenin signaling can induce chromosomal instability in colon cancer. Proc. Natl. Acad. Sci. USA. 2006;103:10747–10752. doi: 10.1073/pnas.0604206103. PubMed DOI PMC
Cisyk A., Penner-Goeke S., Lichtensztejn Z., Nugent Z., Wightman R., Singh H., McManus K.J. Characterizing the prevalence of chromosome instability in interval colorectal cancer. Neoplasia. 2015;17:306–316. doi: 10.1016/j.neo.2015.02.001. PubMed DOI PMC
Thomas D.C., Umar A., Kunkel T. Microsatellite instability and mismatch repair defects in cancer cells. Mutat. Res. Mol. Mech. Mutagen. 1996;350:201–205. doi: 10.1016/0027-5107(95)00112-3. PubMed DOI
Boland C.R., Thibodeau S.N., Hamilton S.R., Sidransky D., Eshleman J.R., Burt R.W., Meltzer S.J., Rodriguez-Bigas M.A., Fodde R., Ranzani G.N., et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–5257. PubMed
Alexander J., Watanabe T., Wu T.-T., Rashid A., Li S., Hamilton S.R. Histopathological Identification of Colon Cancer with Microsatellite Instability. Am. J. Pathol. 2001;158:527–535. doi: 10.1016/S0002-9440(10)63994-6. PubMed DOI PMC
Lanza G., Gafà R., Maestri I., Santini A., Matteuzzi M., Cavazzini L. Immunohistochemical Pattern of MLH1/MSH2 Expression Is Related to Clinical and Pathological Features in Colorectal Adenocarcinomas with Microsatellite Instability. Mod. Pathol. 2002;15:741–749. doi: 10.1097/01.MP.0000018979.68686.B2. PubMed DOI
Ricciardiello L., Ceccarelli C., Angiolini G., Pariali M., Chieco P., Paterini P., Biasco G., Martinelli G.N., Roda E., Bazzoli F. High Thymidylate Synthase Expression in Colorectal Cancer with Microsatellite Instability: Implications for Chemotherapeutic Strategies. Clin. Cancer Res. 2005;11:4234–4240. doi: 10.1158/1078-0432.CCR-05-0141. PubMed DOI
Trautmann K., Terdiman J.P., French A.J., Roydasgupta R., Sein N., Kakar S., Fridlyand J., Snijders A.M., Albertson N.G., Thibodeau S.N., et al. Chromosomal Instability in Microsatellite-Unstable and Stable Colon Cancer. Clin. Cancer Res. 2006;12:6379–6385. doi: 10.1158/1078-0432.CCR-06-1248. PubMed DOI
Peltomaki P. Deficient DNA mismatch repair: A common etiologic factor for colon cancer. Hum. Mol. Genet. 2001;10:735–740. doi: 10.1093/hmg/10.7.735. PubMed DOI
Hinoue T., Weisenberger D.J., Lange C.P., Shen H., Byun H.-M., Berg D.V.D., Malik S., Pan F., Noushmehr H., Van Dijk C.M., et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2011;22:271–282. doi: 10.1101/gr.117523.110. PubMed DOI PMC
Ogino S., Nosho K., Kirkner G.J., Kawasaki T., Meyerhardt J.A., Loda M., Giovannucci E.L., Fuchs C.S. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2008;58:90–96. doi: 10.1136/gut.2008.155473. PubMed DOI PMC
Toyota M., Ahuja N., Ohe-Toyota M., Herman J.G., Baylin S.B., Issa J.-P. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA. 1999;96:8681–8686. doi: 10.1073/pnas.96.15.8681. PubMed DOI PMC
Huang D., Sun W., Zhou Y., Li P., Chen F., Chen H., Xia D., Xu E., Lai M., Wu Y., et al. Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 2018;37:173–187. doi: 10.1007/s10555-017-9726-5. PubMed DOI
Yaeger R., Chatila W.K., Lipsyc M.D., Hechtman J., Cercek A., Sanchez-Vega F., Jayakumaran G., Middha S., Zehir A., Donoghue M.T., et al. Clinical Sequencing Defines the Genomic Landscape of Metastatic Colorectal Cancer. Cancer Cell. 2018;33:125–136.e3. doi: 10.1016/j.ccell.2017.12.004. PubMed DOI PMC
Horst D. Plastizität der WNT-Signalwegaktivität im Kolonkarzinom. Der Pathol. 2012;33:194–197. doi: 10.1007/s00292-012-1660-2. PubMed DOI
Kongkanuntn R., Bubb V.J., Sansom O.J., Wyllie A.H., Harrison D.J., Clarke A. Dysregulated expression of β-catenin marks early neoplastic change in Apc mutant mice, but not all lesions arising in Msh2 deficient mice. Oncogene. 1999;18:7219–7225. doi: 10.1038/sj.onc.1203181. PubMed DOI
Jeong W.-J., Yoon J.-B., Park J.-C., Lee S.-H., Kaduwal S., Kim H., Choi K.-Y. Ras Stabilization Through Aberrant Activation of Wnt/ -Catenin Signaling Promotes Intestinal Tumorigenesis. Sci. Signal. 2012;5:ra30. doi: 10.1126/scisignal.2002242. PubMed DOI
Lemieux E., Cagnol S., Beaudry K., Carrier J., Rivard N. Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene. 2014;34:4914–4927. doi: 10.1038/onc.2014.416. PubMed DOI PMC
Hatzivassiliou G., Haling J.R., Chen H., Song K., Price S., Heald R., Hewitt J.F.M., Zak M., Peck A., Orr C., et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature. 2013;501:232–236. doi: 10.1038/nature12441. PubMed DOI
Haigis K.M., Kendall K.R., Wang Y., Cheung A., Haigis M.C., Glickman J.N., Niwa-Kawakita M., Sweet-Cordero A., Sebolt-Leopold J., Shannon K.M., et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat. Genet. 2008;40:600–608. doi: 10.1038/ng.115. PubMed DOI PMC
Pacold M.E., Suire S., Perisic O., Lara-González S., Davis C.T., Walker E.H., Hawkins P., Stephens L.R., Eccleston J.F., Williams R.L. Crystal Structure and Functional Analysis of Ras Binding to Its Effector Phosphoinositide 3-Kinase γ. Cell. 2000;103:931–944. doi: 10.1016/S0092-8674(00)00196-3. PubMed DOI
Murillo M.M., Zelenay S., Nye E., Castellano E., Lassailly F., Stamp G., Downward J. RAS interaction with PI3K p110α is required for tumor-induced angiogenesis. J. Clin. Investig. 2014;124:3601–3611. doi: 10.1172/JCI74134. PubMed DOI PMC
Di Nicolantonio F., Martini M., Molinari F., Sartore-Bianchi A., Arena S., Saletti P., De Dosso S., Mazzucchelli L., Frattini M., Siena S., et al. Wild-Type BRAF Is Required for Response to Panitumumab or Cetuximab in Metastatic Colorectal Cancer. J. Clin. Oncol. 2008;26:5705–5712. doi: 10.1200/JCO.2008.18.0786. PubMed DOI
Souglakos J., Philips J., Wang R., Marwah S., Silver M., Tzardi M., Silver J., Ogino S., Hooshmand S., Kwak E., et al. Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br. J. Cancer. 2009;101:465–472. doi: 10.1038/sj.bjc.6605164. PubMed DOI PMC
Yokota T., Ura T., Shibata N., Takahari D., Shitara K., Nomura M., Kondo C., Mizota A., Utsunomiya S., Muro K., et al. BRAF mutation is a powerful prognostic factor in advanced and recurrent colorectal cancer. Br. J. Cancer. 2011;104:856–862. doi: 10.1038/bjc.2011.19. PubMed DOI PMC
Chen J., Guo F., Shi X., Zhang L., Zhang A., Jin H., He Y. BRAF V600E mutation and KRAS codon 13 mutations predict poor survival in Chinese colorectal cancer patients. BMC Cancer. 2014;14:802. doi: 10.1186/1471-2407-14-802. PubMed DOI PMC
Sahin I.H., Kazmi S.M., Yorio J.T., Bhadkamkar N.A., Kee B.K., Garrett C.R. Rare Though Not Mutually Exclusive: A Report of Three Cases of Concomitant KRAS and BRAF Mutation and a Review of the Literature. J. Cancer. 2013;4:320–322. doi: 10.7150/jca.3619. PubMed DOI PMC
Li A.-J., Li H.-G., Tang E.-J., Wu W., Chen Y., Jiang H.-H., Lin M.-B., Yin L. PIK3CA and TP53 mutations predict overall survival of stage II/III colorectal cancer patients. World J. Gastroenterol. 2018;24:631–640. doi: 10.3748/wjg.v24.i5.631. PubMed DOI PMC
Lu T., Li J. Clinical applications of urinary cell-free DNA in cancer: Current insights and promising future. Am. J. Cancer Res. 2017;7:2318–2332. PubMed PMC
Sidransky D., Tokino T., Hamilton S.R., Kinzler K., Levin B., Frost P., Vogelstein B. Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science. 1992;256:102–105. doi: 10.1126/science.1566048. PubMed DOI
De Mattos-Arruda L., Mayor R., Ng C.K.Y., Weigelt B., Martinez-Ricarte F., Torrejon D., Oliveira M., Arias A., Raventós C., Tang J., et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat. Commun. 2015;6:8839. doi: 10.1038/ncomms9839. PubMed DOI PMC
Stefancu A., Badarinza M., Moisoiu V., Iancu S.D., Serban O., Leopold N., Fodor D. SERS-based liquid biopsy of saliva and serum from patients with Sjögren’s syndrome. Anal. Bioanal. Chem. 2019;411:5877–5883. doi: 10.1007/s00216-019-01969-x. PubMed DOI
Song Z., Cai Z., Yan J., Shao Y.W., Zhang Y. Liquid biopsies using pleural effusion-derived exosomal DNA in advanced lung adenocarcinoma. Transl. Lung Cancer Res. 2019;8:392–400. doi: 10.21037/tlcr.2019.08.14. PubMed DOI PMC
Peterson V.M., Castro C.M., Chung J., Miller N.C., Ullal A.V., Castano M.D., Penson R.T., Lee H., Birrer M.J., Weissleder R. Ascites analysis by a microfluidic chip allows tumor-cell profiling. Proc. Natl. Acad. Sci. USA. 2013;110:E4978–E4986. doi: 10.1073/pnas.1315370110. PubMed DOI PMC
Kim M.-Y., Oskarsson T., Acharyya S., Nguyen N.X., Zhang X.H.-F., Norton L., Massagué J. Tumor Self-Seeding by Circulating Cancer Cells. Cell. 2009;139:1315–1326. doi: 10.1016/j.cell.2009.11.025. PubMed DOI PMC
Ruiz C., Li J., Luttgen M.S., Kolatkar A., Kendall J.T., Flores E., Topp Z., Samlowski W.E., McClay E., Bethel K., et al. Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients. Phys. Biol. 2015;12:016008. doi: 10.1088/1478-3975/12/1/016008. PubMed DOI PMC
Che J., Yu V., Garon E.B., Goldman J.W., Di Carlo D. Biophysical isolation and identification of circulating tumor cells. Lab Chip. 2017;17:1452–1461. doi: 10.1039/C7LC00038C. PubMed DOI PMC
Harouaka R., Nisic M., Zheng S.-Y. Circulating tumor cell enrichment based on physical properties. J. Lab. Autom. 2013;18:455–468. doi: 10.1177/2211068213494391. PubMed DOI PMC
Marrinucci D., Bethel K., Kolatkar A., Luttgen M.S., Malchiodi M., Baehring F., Voigt K., Lazar D., Nieva J.J., Bazhenova L., et al. Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys. Biol. 2012;9:016003. doi: 10.1088/1478-3975/9/1/016003. PubMed DOI PMC
Ashworth T.R. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust. Med. J. 1869;14:146.
Hofman V., Ilie M., Long E., Selva E., Bonnetaud C., Molina T., Venissac N., Mouroux J., Vielh P., Hofman P. Detection of circulating tumor cells as a prognostic factor in patients undergoing radical surgery for non-small-cell lung carcinoma: Comparison of the efficacy of the CellSearch Assay™ and the isolation by size of epithelial tumor cell method. Int. J. Cancer. 2011;129:1651–1660. doi: 10.1002/ijc.25819. PubMed DOI
Müller V., Stahmann N., Riethdorf S., Rau T., Zabel T., Goetz A., Jänicke F., Pantel K. Circulating Tumor Cells in Breast Cancer: Correlation to Bone Marrow Micrometastases, Heterogeneous Response to Systemic Therapy and Low Proliferative Activity. Clin. Cancer Res. 2005;11:3678–3685. doi: 10.1158/1078-0432.CCR-04-2469. PubMed DOI
Onidani K., Shoji H., Kakizaki T., Yoshimoto S., Okaya S., Miura N., Sekikawa S., Furuta K., Lim C.T., Shibahara T., et al. Monitoring of cancer patients via next-generation sequencing of patient-derived circulating tumor cells and tumor DNA. Cancer Sci. 2019;110:2590–2599. doi: 10.1111/cas.14092. PubMed DOI PMC
Scher H.I., Lu D., Schreiber N.A., Louw J., Graf R.P., Vargas H.A., Johnson A., Jendrisak A., Bambury R., Danila D., et al. Association of AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol. 2016;2:1441–1449. doi: 10.1001/jamaoncol.2016.1828. PubMed DOI PMC
Gasch C., Bauernhofer T., Pichler M., Langer-Freitag S., Reeh M., Seifert A.M., Mauermann O., Izbicki J., Pantel K., Riethdorf S. Heterogeneity of Epidermal Growth Factor Receptor Status and Mutations of KRAS/PIK3CA in Circulating Tumor Cells of Patients with Colorectal Cancer. Clin. Chem. 2013;59:252–260. doi: 10.1373/clinchem.2012.188557. PubMed DOI
Malihi P.D., Morikado M., Welter L., Liu S.T., Miller E.T., Cadaneanu R.M., Knudsen B.S., Lewis M.S., Carlsson A., Velasco C.R., et al. Clonal diversity revealed by morphoproteomic and copy number profiles of single prostate cancer cells at diagnosis. Converg. Sci. Phys. Oncol. 2018;4:015003. doi: 10.1088/2057-1739/aaa00b. PubMed DOI PMC
Thiele J.-A., Pitule P., Hicks J., Kuhn P. Single-Cell Analysis of Circulating Tumor Cells. Adv. Struct. Saf. Stud. 2019;1908:243–264. doi: 10.1007/978-1-4939-9004-7_17. PubMed DOI PMC
Carlsson A., Nair V.S., Luttgen M.S., Keu K.V., Horng G., Vasanawala M., Kolatkar A., Jamali M., Iagaru A.H., Kuschner W., et al. Circulating tumor microemboli diagnostics for patients with non-small-cell lung cancer. J. Thorac. Oncol. 2014;9:1111–1119. doi: 10.1097/JTO.0000000000000235. PubMed DOI PMC
Steeg P.S. Tumor metastasis: Mechanistic insights and clinical challenges. Nat. Med. 2006;12:895–904. doi: 10.1038/nm1469. PubMed DOI
Szczerba B.M., Castro-Giner F., Vetter M., Krol I., Gkountela S., Landin J., Scheidmann M.C., Donato C., Scherrer R., Singer J., et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019;566:553–557. doi: 10.1038/s41586-019-0915-y. PubMed DOI
Guibert N., Delaunay M., Lusque A., Boubekeur N., Rouquette I., Clermont E., Gouin S., Dormoy I., Favre G., Mazieres J., et al. PD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab. Lung Cancer. 2018;120:108–112. doi: 10.1016/j.lungcan.2018.04.001. PubMed DOI
Boffa D.J., Graf R.P., Salazar M.C., Hoag J., Lu D., Krupa R., Louw J., Dugan L., Wang Y., Landers M., et al. Cellular Expression of PD-L1 in the Peripheral Blood of Lung Cancer Patients is Associated with Worse Survival. Cancer Epidemiol. Biomark. Prev. 2017;26:1139–1145. doi: 10.1158/1055-9965.EPI-17-0120. PubMed DOI PMC
Mandel P., Metais P. Les acides nucleiques du plasma sanguine chez l’homme. Comptes Rendus Seances Soc. Biol. Fil. 1948;142:241–243. PubMed
Jahr S., Hentze H., Englisch S., Hardt D., Fackelmayer F.O., Hesch R.D., Knippers R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–1665. PubMed
Anker P., Stroun M., Maurice P.A. Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res. 1975;35:2375–2382. PubMed
Wang W., Kong P., Ma G., Li L., Zhu J., Xia T., Xie H., Zhou W., Wang S. Characterization of the release and biological significance of cell-free DNA from breast cancer cell lines. Oncotarget. 2017;8:43180–43191. doi: 10.18632/oncotarget.17858. PubMed DOI PMC
Stroun M., Lyautey J., Lederrey C., Olson-Sand A., Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin. Chim. Acta. 2001;313:139–142. doi: 10.1016/S0009-8981(01)00665-9. PubMed DOI
Mouliere F., Thierry A. The importance of examining the proportion of circulating DNA originating from tumor, microenvironment and normal cells in colorectal cancer patients. Expert Opin. Biol. Ther. 2012;12:209–215. doi: 10.1517/14712598.2012.688023. PubMed DOI
Lo Y.M.D., Chan K.C.A., Sun H., Chen E.Z., Jiang P., Lun F.M.F., Zheng Y.W., Leung T.Y., Lau T.K., Cantor C., et al. Maternal Plasma DNA Sequencing Reveals the Genome-Wide Genetic and Mutational Profile of the Fetus. Sci. Transl. Med. 2010;2:61ra91. doi: 10.1126/scitranslmed.3001720. PubMed DOI
Fan H.C., Blumenfeld Y.J., Chitkara U., Hudgins L., Quake S.R. Analysis of the Size Distributions of Fetal and Maternal Cell-Free DNA by Paired-End Sequencing. Clin. Chem. 2010;56:1279–1286. doi: 10.1373/clinchem.2010.144188. PubMed DOI
Leon S.A., Shapiro B., Sklaroff D.M., Yaros M.J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–650. PubMed
Hao T.B., Shi W., Shen X.J., Qi J., Wu X.H., Wu Y., Tang Y.Y., Ju S.Q. Circulating cell-free DNA in serum as a biomarker for diagnosis and prognostic prediction of colorectal cancer. Br. J. Cancer. 2014;111:1482–1489. doi: 10.1038/bjc.2014.470. PubMed DOI PMC
Mohan S., Ayub M., Rothwell D.G., Gulati S., Kilerci B., Hollebecque A., Leong H.S., Smith N.K., Sahoo S., Descamps T., et al. Analysis of circulating cell-free DNA identifies KRAS copy number gain and mutation as a novel prognostic marker in Pancreatic cancer. Sci. Rep. 2019;9:11610–11616. doi: 10.1038/s41598-019-47489-7. PubMed DOI PMC
Janku F., Huang H.J., Claes B., Falchook G.S., Fu S., Hong D., Ramzanali N.M., Nitti G., Cabrilo G., Tsimberidou A.M., et al. BRAF Mutation Testing in Cell-Free DNA from the Plasma of Patients with Advanced Cancers Using a Rapid, Automated Molecular Diagnostics System. Mol. Cancer Ther. 2016;15:1397–1404. doi: 10.1158/1535-7163.MCT-15-0712. PubMed DOI
Hong D.S., Morris V.K., El Osta B., Sorokin A.V., Janku F., Fu S., Overman M.J., Piha-Paul S.A., Subbiah V., Kee B., et al. Phase IB Study of Vemurafenib in Combination with Irinotecan and Cetuximab in Patients with Metastatic Colorectal Cancer with BRAFV600E Mutation. Cancer Discov. 2016;6:1352–1365. doi: 10.1158/2159-8290.CD-16-0050. PubMed DOI PMC
Allard W.J. Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas but not in Healthy Subjects or Patients With Nonmalignant Diseases. Clin. Cancer Res. 2004;10:6897–6904. doi: 10.1158/1078-0432.CCR-04-0378. PubMed DOI
Cohen S.J., Terstappen L.W., Punt C.J., Mitchell E.P., Fynan T.M., Li T., Matera J., Doyle G.V., Meropol N.J. Circulating endothelial cells (CEC) and circulating tumor cells (CTC) in patients (pts) with metastatic colorectal cancer (mCRC) J. Clin. Oncol. 2006;24:3531. doi: 10.1200/jco.2006.24.18_suppl.3531. DOI
De Bono J., Scher H.I., Montgomery R.B., Parker C., Miller M.C., Tissing H., Doyle G., Terstappen L.W., Pienta K.J., Raghavan D. Circulating Tumor Cells Predict Survival Benefit from Treatment in Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2008;14:6302–6309. doi: 10.1158/1078-0432.CCR-08-0872. PubMed DOI
Cristofanilli M., Budd G.T., Ellis M.J., Stopeck A., Matera J., Miller M.C., Reuben J.M., Doyle G.V., Allard W.J., Terstappen L.W.M.M., et al. Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer. N. Engl. J. Med. 2004;351:781–791. doi: 10.1056/NEJMoa040766. PubMed DOI
Negin B.P., Cohen S.J. Circulating Tumor Cells in Colorectal Cancer: Past, Present, and Future Challenges. Curr. Treat. Options Oncol. 2010;11:1–13. doi: 10.1007/s11864-010-0115-3. PubMed DOI
Folkersma L.R., Gómez C.O., Manso L.S.J., De Castro S.V., Romo I.G., Lázaro M.V., De La Orden G.V., Fernández M.A., Rubio E.D., Moyano A.S., et al. Immunomagnetic quantification of circulating tumoral cells in patients with prostate cancer: Clinical and pathological correlation. Arch. Espanoles de Urol. 2010;63:23–31. PubMed
Arrazubi V., Mata E., Antelo M.L., Tarifa A., Herrera J., Zazpe C., Teijeira L., Viudez A., Suárez J., Hernández I., et al. Circulating Tumor Cells in Patients Undergoing Resection of Colorectal Cancer Liver Metastases. Clinical Utility for Long-Term Outcome: A Prospective Trial. Ann. Surg. Oncol. 2019;26:2805–2811. doi: 10.1245/s10434-019-07503-8. PubMed DOI
Keomanee-Dizon K., Shishido S.N., Kuhn P. Methods in Molecular Biology. Volume 215. Springer Science and Business Media LLC; Cham, Switzerland: 2020. Circulating Tumor Cells: High-Throughput Imaging of CTCs and Bioinformatic Analysis; pp. 89–104. PubMed PMC
Gerdtsson A.S., Thiele J.-A., Shishido S.N., Zheng S., Schaffer R., Bethel K., Curley S., Lenz H.-J., Hanna D.L., Nieva J., et al. Single cell correlation analysis of liquid and solid biopsies in metastatic colorectal cancer. Oncotarget. 2019;10:7016–7030. doi: 10.18632/oncotarget.27271. PubMed DOI PMC
Rodriguez-Lee M., Kolatkar A., McCormick M., Dago A.D., Kendall J., Carlsson N.A., Bethel K., Greenspan E.J., Hwang S.E., Waitman K.R., et al. Effect of Blood Collection Tube Type and Time to Processing on the Enumeration and High-Content Characterization of Circulating Tumor Cells Using the High-Definition Single-Cell Assay. Arch. Pathol. Lab. Med. 2018;142:198–207. doi: 10.5858/arpa.2016-0483-OA. PubMed DOI PMC
Thiele J.-A., Bethel K., Kralickova M., Kuhn P. Circulating Tumor Cells: Fluid Surrogates of Solid Tumors. Annu. Rev. Pathol. Mech. Dis. 2017;12:419–447. doi: 10.1146/annurev-pathol-052016-100256. PubMed DOI PMC
Scher H.I., Graf R.P., Schreiber N.A., Jayaram A., Winquist E., McLaughlin B., Lu D., Fleisher M., Orr S., Lowes L., et al. Assessment of the Validity of Nuclear-Localized Androgen Receptor Splice Variant 7 in Circulating Tumor Cells as a Predictive Biomarker for Castration-Resistant Prostate Cancer. JAMA Oncol. 2018;4:1179–1186. doi: 10.1001/jamaoncol.2018.1621. PubMed DOI PMC
Vona G., Sabile A., Louha M., Sitruk V., Romana S.P., Schütze K., Capron F., Franco M., Pazzagli M., Vekemans M., et al. Isolation by Size of Epithelial Tumor Cells. Am. J. Pathol. 2000;156:57–63. doi: 10.1016/S0002-9440(10)64706-2. PubMed DOI PMC
Chinen L., De Carvalho F.M., Rocha B.M.M., Aguiar C.M., Abdallah E.A., Campanha D., Mingues N.B., De Oliveira T.B., Maciel M.S., Cervantes G.M., et al. Cytokeratin-based CTC counting unrelated to clinical follow up. J. Thorac. Dis. 2013;5:593–599. PubMed PMC
Vona G., Beroud C., Benachi A., Quenette A., Bonnefont J., Romana S.P., Dumez Y., Lacour B., Paterlini-Bréchot P. Enrichment, Immunomorphological, and Genetic Characterization of Fetal Cells Circulating in Maternal Blood. Am. J. Pathol. 2002;160:51–58. doi: 10.1016/S0002-9440(10)64348-9. PubMed DOI PMC
e Silva V.S., Chinen L., Abdallah E.A., Damascena A., Paludo J., Chojniak R., Dettino A., De Mello C.A.L., Alves V.S., Fanelli M.F. Early detection of poor outcome in patients with metastatic colorectal cancer: Tumor kinetics evaluated by circulating tumor cells. OncoTargets Ther. 2016;9:7503–7513. doi: 10.2147/OTT.S115268. PubMed DOI PMC
Danila D.C., Samoila A., Patel C., Schreiber N., Herkal A., Anand A., Bastos D., Heller G., Fleisher M., Scher H.I. Clinical Validity of Detecting Circulating Tumor Cells by AdnaTest Assay Compared With Direct Detection of Tumor mRNA in Stabilized Whole Blood, as a Biomarker Predicting Overall Survival for Metastatic Castration-Resistant Prostate Cancer Patients. Cancer J. 2016;22:315–320. doi: 10.1097/PPO.0000000000000220. PubMed DOI PMC
Todenhöfer T., Hennenlotter J., Feyerabend S., Aufderklamm S., Mischinger J., Kühs U., Gerber V., Fetisch J., Schilling D., Hauch S., et al. Preliminary experience on the use of the Adnatest® system for detection of circulating tumor cells in prostate cancer patients. Anticancer Res. 2012;32:3507–3513. PubMed
Wu S., Liu S., Liu Z., Huang J., Pu X., Li J., Yang D., Deng H., Yang N., Xu J. Classification of Circulating Tumor Cells by Epithelial-Mesenchymal Transition Markers. PLoS ONE. 2015;10:e0123976. doi: 10.1371/journal.pone.0123976. PubMed DOI PMC
Zhao R., Cai Z., Li S., Cheng Y., Gao H., Liu F., Wu S., Liu S., Dong Y., Zheng L., et al. Expression and clinical relevance of epithelial and mesenchymal markers in circulating tumor cells from colorectal cancer. Oncotarget. 2016;8:9293–9302. doi: 10.18632/oncotarget.14065. PubMed DOI PMC
Gasiorowski L., Dyszkiewicz W., Zielinski P. In-vivo isolation of circulating tumor cells in non-small cell lung cancer patients by CellCollector. Neoplasma. 2017;64:938–944. doi: 10.4149/neo_2017_618. PubMed DOI
He Y., Shi J., Shi G., Xu X., Liu Q., Liu C., Gao Z., Bai J., Shan B. Using the New CellCollector to Capture Circulating Tumor Cells from Blood in Different Groups of Pulmonary Disease: A Cohort Study. Sci. Rep. 2017;7:9542. doi: 10.1038/s41598-017-09284-0. PubMed DOI PMC
Tsai W.-S., You J.-F., Hung H.-Y., Hsieh P.-S., Hsieh B., Lenz H.-J., Idos G., Friedland S., Pan J.Y.-J., Shao H.-J., et al. Novel Circulating Tumor Cell Assay for Detection of Colorectal Adenomas and Cancer. Clin. Transl. Gastroenterol. 2019;10:e00088. doi: 10.14309/ctg.0000000000000088. PubMed DOI PMC
Gupta P., Gulzar Z., Hsieh B., Lim A., Watson D., Mei R. Analytical validation of the CellMax platform for early detection of cancer by enumeration of rare circulating tumor cells. J. Circ. Biomark. 2019;8:1849454419899214. doi: 10.1177/1849454419899214. PubMed DOI PMC
Jaeger B.A.S., Jueckstock J., Andergassen U., Salmen J., Schochter F., Fink V., Alunni-Fabbroni M., Rezai M., Beck T., Beckmann M.W., et al. Evaluation of Two Different Analytical Methods for Circulating Tumor Cell Detection in Peripheral Blood of Patients with Primary Breast Cancer. BioMed Res. Int. 2014;2014:491459. doi: 10.1155/2014/491459. PubMed DOI PMC
Wang L., Balasubramanian P., Chen A.P., Kummar S., Evrard Y.A., Kinders R.J. Promise and limits of the CellSearch platform for evaluating pharmacodynamics in circulating tumor cells. Semin. Oncol. 2016;43:464–475. doi: 10.1053/j.seminoncol.2016.06.004. PubMed DOI PMC
Bin Lim S., Yeo T., Di Lee W., Bhagat A.A.S., Tan S.J., Tan D.S.W., Lim W.-T., Lim C.T. Addressing cellular heterogeneity in tumor and circulation for refined prognostication. Proc. Natl. Acad. Sci. USA. 2019;116:17957–17962. doi: 10.1073/pnas.1907904116. PubMed DOI PMC
Lee Y., Guan G., Bhagat A.A. ClearCell® FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells. Cytom. Part A. 2018;93:1251–1254. doi: 10.1002/cyto.a.23507. PubMed DOI
Wu W., Zhang Z., Gao X.H., Shen Z., Jing Y., Lu H., Li H., Yang X., Cui X., Li Y., et al. Clinical significance of detecting circulating tumor cells in colorectal cancer using subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) Oncotarget. 2017;8:21639–21649. doi: 10.18632/oncotarget.15452. PubMed DOI PMC
Xu L., Jia S., Li H., Yu Y., Liu G., Wu Y., Liu X., Liu C., Zhou Y., Zhang Z., et al. Characterization of circulating tumor cells in newly diagnosed breast cancer. Oncol. Lett. 2017;15:2522–2528. doi: 10.3892/ol.2017.7540. PubMed DOI PMC
D’Oronzo S., Lovero D., Palmirotta R., Stucci L.S., Tucci M., Felici C., Cascardi E., Giardina C., Cafforio P., Silvestris F. Dissection of major cancer gene variants in subsets of circulating tumor cells in advanced breast cancer. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-53660-x. PubMed DOI PMC
Kondo Y., Hayashi K., Kawakami K., Miwa Y., Hayashi H., Yamamoto M. KRAS mutation analysis of single circulating tumor cells from patients with metastatic colorectal cancer. BMC Cancer. 2017;17:311. doi: 10.1186/s12885-017-3305-6. PubMed DOI PMC
Liu Z., Fusi A., Klopocki E., Schmittel A., Tinhofer I., Nonnemacher A., Keilholz U. Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients. J. Transl. Med. 2011;9:70. doi: 10.1186/1479-5876-9-70. PubMed DOI PMC
Awasthi N.P., Kumari S., Neyaz A., Gupta S., Agarwal A., Singhal A., Husain N. EpCAM-based Flow Cytometric Detection of Circulating Tumor Cells in Gallbladder Carcinoma Cases. Asian Pac. J. Cancer Prev. 2017;18:3429–3437. PubMed PMC
Stott S.L., Hsu C.-H., Tsukrov D.I., Yu M., Miyamoto D.T., Waltman B.A., Rothenberg S.M., Shah A.M., Smas M.E., Korir G.K., et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA. 2010;107:18392–18397. doi: 10.1073/pnas.1012539107. PubMed DOI PMC
Xue P., Ye K., Gao J., Wu Y., Guo J., Hui K.M., Kang Y. Isolation and elution of Hep3B circulating tumor cells using a dual-functional herringbone chip. Microfluid. Nanofluid. 2013;16:605–612. doi: 10.1007/s10404-013-1250-5. DOI
Castle J., Morris K., Pritchard S., Kirwan C.C. Challenges in enumeration of CTCs in breast cancer using techniques independent of cytokeratin expression. PLoS ONE. 2017;12:e0175647. doi: 10.1371/journal.pone.0175647. PubMed DOI PMC
Farace F., Massard C., Vimond N., Drusch F., Jacques N., Billiot F., Laplanche A., Chauchereau A., Lacroix L., Planchard D., et al. A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br. J. Cancer. 2011;105:847–853. doi: 10.1038/bjc.2011.294. PubMed DOI PMC
Cann G.M., Gulzar Z.G., Cooper S., Li R., Luo S., Tat M., Stuart S., Schroth G., Srinivas S., Ronaghi M., et al. mRNA-Seq of Single Prostate Cancer Circulating Tumor Cells Reveals Recapitulation of Gene Expression and Pathways Found in Prostate Cancer. PLoS ONE. 2012;7:e49144. doi: 10.1371/journal.pone.0049144. PubMed DOI PMC
Deng G., Krishnakumar S., Powell A.A., Zhang H., Mindrinos M., Telli M.L., Davis R.W., Jeffrey S.S. Single cell mutational analysis of PIK3CA in circulating tumor cells and metastases in breast cancer reveals heterogeneity, discordance, and mutation persistence in cultured disseminated tumor cells from bone marrow. BMC Cancer. 2014;14:456. doi: 10.1186/1471-2407-14-456. PubMed DOI PMC
Bobek V., Matkowski R., Gürlich R., Grabowski K., Szelachowska J., Lischke R., Schutzner J., Harustiak T., Pazdro A., Rzechonek A., et al. Cultivation of circulating tumor cells in esophageal cancer. Folia Histochem. Cytobiol. 2014;52:171–177. doi: 10.5603/FHC.2014.0020. PubMed DOI
Kolostova K., Matkowski R., Jędryka M., Soter K., Cegan M., Pinkas M., Jakabova A., Pavlasek J., Spicka J., Bobek V. The added value of circulating tumor cells examination in ovarian cancer staging. Am. J. Cancer Res. 2015;5:3363–3375. PubMed PMC
Gertler R., Rosenberg R., Fuehrer K., Dahm M., Nekarda H., Siewert J.R. Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. Methods Mol. Biol. 2003;162:149–155. doi: 10.1007/978-3-642-59349-9_13. PubMed DOI
Kaifi J.T., Kunkel M., Das A., Harouaka R., Dicker D.T., Li G., Zhu J., Clawson G.A., Yang Z., Reed M.F., et al. Circulating tumor cell isolation during resection of colorectal cancer lung and liver metastases: A prospective trial with different detection techniques. Cancer Biol. Ther. 2015;16:699–708. doi: 10.1080/15384047.2015.1030556. PubMed DOI PMC
Schwarzenbach H., Stoehlmacher J., Pantel K., Goekkurt E. Detection and Monitoring of Cell-Free DNA in Blood of Patients with Colorectal Cancer. Ann. N. Y. Acad. Sci. 2008;1137:190–196. doi: 10.1196/annals.1448.025. PubMed DOI
Czeiger D., Shaked G., Eini H., Vered I., Belochitski O., Avriel A., Ariad S., Douvdevani A. Measurement of Circulating Cell-Free DNA Levels by a New Simple Fluorescent Test in Patients With Primary Colorectal Cancer. Am. J. Clin. Pathol. 2011;135:264–270. doi: 10.1309/AJCP4RK2IHVKTTZV. PubMed DOI
Beaver J.A., Jelovac D., Balukrishna S., Cochran R.L., Croessmann S., Zabransky D.J., Wong H.Y., Toro P.V., Cidado J., Blair B.G., et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin. Cancer Res. 2014;20:2643–2650. doi: 10.1158/1078-0432.CCR-13-2933. PubMed DOI PMC
Baslan T., Kendall J., Ward B., Cox H., Leotta A., Rodgers L., Riggs M., D’Italia S., Sun G., Yong M., et al. Optimizing sparse sequencing of single cells for highly multiplex copy number profiling. Genome Res. 2015;25:714–724. doi: 10.1101/gr.188060.114. PubMed DOI PMC
Glenn T.C. Field guide to next?generation DNA sequencers. Mol. Ecol. Resour. 2011;11:759–769. doi: 10.1111/j.1755-0998.2011.03024.x. PubMed DOI
Molparia B., Oliveira G., Wagner J.L., Spencer E.G., Torkamani A. A feasibility study of colorectal cancer diagnosis via circulating tumor DNA derived CNV detection. PLoS ONE. 2018;13:e0196826. doi: 10.1371/journal.pone.0196826. PubMed DOI PMC
Li J., Dittmar R., Xia S., Zhang H., Du M., Huang C., Druliner B.R., Boardman L., Wang L. Cell-free DNA copy number variations in plasma from colorectal cancer patients. Mol. Oncol. 2017;11:1099–1111. doi: 10.1002/1878-0261.12077. PubMed DOI PMC
Birkenkamp-Demtröder K., Nordentoft I.K., Christensen E., Høyer S., Reinert T., Vang S., Borre M., Agerbæk M., Jensen J.B., Ørntoft T.F., et al. Genomic Alterations in Liquid Biopsies from Patients with Bladder Cancer. Eur. Urol. 2016;70:75–82. doi: 10.1016/j.eururo.2016.01.007. PubMed DOI
Zonta E., Garlan F., Pécuchet N., Perez-Toralla K., Caen O., Milbury C., Didelot A., Fabre E., Blons H., Laurent-Puig P., et al. Multiplex Detection of Rare Mutations by Picoliter Droplet Based Digital PCR: Sensitivity and Specificity Considerations. PLoS ONE. 2016;11:e0159094. doi: 10.1371/journal.pone.0159094. PubMed DOI PMC
Dressman D., Yan H., Traverso G., Kinzler K.W., Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl. Acad. Sci. USA. 2003;100:8817–8822. doi: 10.1073/pnas.1133470100. PubMed DOI PMC
Schmiegel W.H., Scott R.J., Dooley S., Lewis W., Meldrum C.J., Pockney P.G., Draganic B., Smith S., Hewitt C., Philimore H., et al. Blood-based detection ofRASmutations to guide anti-EGFR therapy in colorectal cancer patients: Concordance of results from circulating tumor DNA and tissue-basedRAStesting. Mol. Oncol. 2017;11:208–219. doi: 10.1002/1878-0261.12023. PubMed DOI PMC
Taly V., Pekin D., Benhaim L., Kotsopoulos S.K., Le Corre D., Li X., Atochin I., Link D.R., Griffiths A.D., Pallier K., et al. Multiplex Picodroplet Digital PCR to Detect KRAS Mutations in Circulating DNA from the Plasma of Colorectal Cancer Patients. Clin. Chem. 2013;59:1722–1731. doi: 10.1373/clinchem.2013.206359. PubMed DOI
Zhu G., Ye X., Dong Z., Lu Y.C., Sun Y., Liu Y., McCormack R., Gu Y., Liu X. Highly Sensitive Droplet Digital PCR Method for Detection of EGFR-Activating Mutations in Plasma Cell–Free DNA from Patients with Advanced Non–Small Cell Lung Cancer. J. Mol. Diagn. 2015;17:265–272. doi: 10.1016/j.jmoldx.2015.01.004. PubMed DOI
Hughesman C.B., Lu X.J.D., Liu K.Y.P., Zhu Y., Towle R.M., Haynes C., Poh C.F. Detection of clinically relevant copy number alterations in oral cancer progression using multiplexed droplet digital PCR. Sci. Rep. 2017;7:11855. doi: 10.1038/s41598-017-11201-4. PubMed DOI PMC
Gale D., Lawson A.R.J., Howarth K., Madi M., Durham B., Smalley S., Calaway J., Blais S., Jones G., Clark J., et al. Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA. PLoS ONE. 2018;13:e0194630. doi: 10.1371/journal.pone.0194630. PubMed DOI PMC
Forshew T., Murtaza M., Parkinson C., Gale D., Tsui D.W.Y., Kaper F., Dawson S.-J., Piskorz A.M., Jimenez-Linan M., Bentley D., et al. Noninvasive Identification and Monitoring of Cancer Mutations by Targeted Deep Sequencing of Plasma DNA. Sci. Transl. Med. 2012;4:136ra68. doi: 10.1126/scitranslmed.3003726. PubMed DOI
Kennedy S.R., Schmitt M.W., Fox E., Kohrn B.F., Salk J.J., Ahn E.H., Prindle M.J., Kuong K.J., Shen J.-C., Risques R.-A., et al. Detecting ultralow-frequency mutations by Duplex Sequencing. Nat. Protoc. 2014;9:2586–2606. doi: 10.1038/nprot.2014.170. PubMed DOI PMC
Iwahashi N., Sakai K., Noguchi T., Yahata T., Matsukawa H., Toujima S., Nishio K., Ino K. Liquid biopsy-based comprehensive gene mutation profiling for gynecological cancer using CAncer Personalized Profiling by deep Sequencing. Sci. Rep. 2019;9:10426. doi: 10.1038/s41598-019-47030-w. PubMed DOI PMC
Kinde I., Wu J., Papadopoulos N., Kinzler K.W., Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. USA. 2011;108:9530–9535. doi: 10.1073/pnas.1105422108. PubMed DOI PMC
Newman A.M., Bratman S.V., To J., Wynne J.F., Eclov N.C.W., Modlin L.A., Liu C.L., Neal J.W., Wakelee H.A., Merritt R.E., et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 2014;20:548–554. doi: 10.1038/nm.3519. PubMed DOI PMC
Newman A.M., Lovejoy A.F., Klass D.M., Kurtz D.M., Chabon J.J., Scherer F., Stehr H., Liu C.L., Bratman S.V., Say C., et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 2016;34:547–555. doi: 10.1038/nbt.3520. PubMed DOI PMC
Fredebohm J., Mehnert D.H., Löber A.-K., Holtrup F., Van Rahden V., Angenendt P., Diehl F. Detection and Quantification of KIT Mutations in ctDNA by Plasma Safe-SeqS. Volume 924. Springer Science and Business Media LLC; Cham, Switzerland: 2016. pp. 187–189. PubMed
Zheng H., Ladouceur M., Greenwood C.M.T., Richards J.B. Effect of Genome-Wide Genotyping and Reference Panels on Rare Variants Imputation. J. Genet. Genome. 2012;39:545–550. doi: 10.1016/j.jgg.2012.07.002. PubMed DOI
Devos T., Tetzner R., Model F., Weiss G., Schuster M., Distler J., Steiger K.V., Grützmann R., Pilarsky C., Habermann J.K., et al. Circulating Methylated SEPT9 DNA in Plasma Is a Biomarker for Colorectal Cancer. Clin. Chem. 2009;55:1337–1346. doi: 10.1373/clinchem.2008.115808. PubMed DOI
Warren J.D., Xiong W., Bunker A.M., Vaughn C.P., Furtado L.V., Owen W.E., Fang J., Samowitz W.S., Heichman K.A. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 2011;9:133. doi: 10.1186/1741-7015-9-133. PubMed DOI PMC
Solassol J., Vendrell J., Märkl B., Haas C., Bellosillo B., Montagut C., Smith M., O’Sullivan B., D’Haene N., Le Mercier M., et al. Multi-Center Evaluation of the Fully Automated PCR-Based Idylla™ KRAS Mutation Assay for Rapid KRAS Mutation Status Determination on Formalin-Fixed Paraffin-Embedded Tissue of Human Colorectal Cancer. PLoS ONE. 2016;11:e0163444. doi: 10.1371/journal.pone.0163444. PubMed DOI PMC
Zwaenepoel K., Duelund J.H., De Winne K., Maes V., Weyn C., Lambin S., Dendooven R., Broeckx G., Steiniche T., Pauwels P. Clinical Performance of the Idylla MSI Test for a Rapid Assessment of the DNA Microsatellite Status in Human Colorectal Cancer. J. Mol. Diagn. 2020;22:386–395. doi: 10.1016/j.jmoldx.2019.12.002. PubMed DOI
García-Foncillas J., Tabernero J., Élez E., Aranda E., Benavides M., Camps C., Jantus-Lewintre E., López R., Muinelo-Romay L., Montagut C., et al. Prospective multicenter real-world RAS mutation comparison between OncoBEAM-based liquid biopsy and tissue analysis in metastatic colorectal cancer. Br. J. Cancer. 2018;119:1464–1470. doi: 10.1038/s41416-018-0293-5. PubMed DOI PMC
Wan N., Weinberg D., Liu T.-Y., Niehaus K., Delubac D., Kannan A., White B., Ariazi E.A., Bailey M., Bertin M., et al. Su1658–Machine Learning Enables Detection of Early-Stage Colorectal Cancer by Whole-Genome Sequencing of Plasma Cell-Free Dna. Gastroenterology. 2019;156:832. doi: 10.1016/S0016-5085(19)38396-9. PubMed DOI PMC
Russo M., Siravegna G., Blaszkowsky L.S., Corti G., Crisafulli G., Ahronian L.G., Mussolin B., Kwak E.L., Buscarino M., Lazzari L., et al. Abstract 878: Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Exp. Mol. Ther. 2016;76:878. doi: 10.1158/1538-7445.am2016-878. PubMed DOI PMC
Diehl F., Schmidt K., Choti M.A., Romans K., Goodman S., Li M., Thornton K., Agrawal N., Sokoll L., Szabo S.A., et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2007;14:985–990. doi: 10.1038/nm.1789. PubMed DOI PMC
Iwanicki-Caron I., Di Fiore F., Roque I., Astruc E., Stetiu M., Duclos A., Tougeron D., Saillard S., Thureau S., Benichou J., et al. Usefulness of the Serum Carcinoembryonic Antigen Kinetic for Chemotherapy Monitoring in Patients With Unresectable Metastasis of Colorectal Cancer. J. Clin. Oncol. 2008;26:3681–3686. doi: 10.1200/JCO.2007.15.0904. PubMed DOI
Li M., Li J.-Y., Zhao A.-L., He J.-S., Zhou L.-X., Li Y.-A., Gu J. Comparison of carcinoembryonic antigen prognostic value in serum and tumour tissue of patients with colorectal cancer. Color. Dis. 2009;11:276–281. doi: 10.1111/j.1463-1318.2008.01591.x. PubMed DOI PMC
Yang K.M., Park I.J., Kim C.W., Roh S.A., Cho D.-H., Kim J.C. The prognostic significance and treatment modality for elevated pre- and postoperative serum CEA in colorectal cancer patients. Ann. Surg. Treat. Res. 2016;91:165–171. doi: 10.4174/astr.2016.91.4.165. PubMed DOI PMC
Sun Z., Wang F., Zhou Q., Yang S., Sun X., Wang G., Li Z., Zhang Z., Song J., Liu J., et al. Pre-operative to post-operative serum carcinoembryonic antigen ratio is a prognostic indicator in colorectal cancer. Oncotarget. 2017;8:54672–54682. doi: 10.18632/oncotarget.17931. PubMed DOI PMC
Imperiale T.F., Ransohoff D.F., Itzkowitz S.H., Brenner H., Werner S., Chen H., Senore C., Segnan N., Lee J.K., Terdiman J.P., et al. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014;371:187–188. doi: 10.1056/NEJMoa1311194. PubMed DOI
Song L., Jia J., Peng X., Xiao W., Li Y. The performance of the SEPT9 gene methylation assay and a comparison with other CRC screening tests: A meta-analysis. Sci. Rep. 2017;7:3032. doi: 10.1038/s41598-017-03321-8. PubMed DOI PMC
Church T.R., Wandell M., Lofton-Day C., Mongin S.J., Burger M., Payne S.R., Castanos-Velez E., Blumenstein B.A., Rösch T., Osborn N., et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2013;63:317–325. doi: 10.1136/gutjnl-2012-304149. PubMed DOI PMC
Lee K.H., Kim J.S., Lee C.S., Kim J.-Y. KRAS discordance between primary and recurrent tumors after radical resection of colorectal cancers. J. Surg. Oncol. 2015;111:1059–1064. doi: 10.1002/jso.23936. PubMed DOI
Fabbri F., Carloni S., Zoli W., Ulivi P., Gallerani G., Fici P., Chiadini E., Passardi A., Frassineti G.L., Ragazzini A., et al. Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett. 2013;335:225–231. doi: 10.1016/j.canlet.2013.02.015. PubMed DOI
Russo M., Crisafulli G., Sogari A., Reilly N.M., Arena S., Lamba S., Bartolini A., Amodio V., Magrì A., Novara L., et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science. 2019;366:1473–1480. doi: 10.1126/science.aav4474. PubMed DOI
Bardelli A., Siena S. Molecular Mechanisms of Resistance to Cetuximab and Panitumumab in Colorectal Cancer. J. Clin. Oncol. 2010;28:1254–1261. doi: 10.1200/JCO.2009.24.6116. PubMed DOI
Luo H., Zhao Q., Wei W., Zheng L., Yi S., Li G., Wang W., Sheng H., Pu H., Mo H., et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci. Transl. Med. 2020;12:eaax7533. doi: 10.1126/scitranslmed.aax7533. PubMed DOI
Aravanis A.M., Lee M., Klausner R.D. Next-Generation Sequencing of Circulating Tumor DNA for Early Cancer Detection. Cell. 2017;168:571–574. doi: 10.1016/j.cell.2017.01.030. PubMed DOI
Cohen J.D., Li L., Wang Y., Thoburn C., Afsari B., Danilova L.V., Douville C., Javed A.A., Wong F., Mattox A., et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–930. doi: 10.1126/science.aar3247. PubMed DOI PMC
Kolostova K., Matkowski R., Gürlich R., Grabowski K., Soter K., Lischke R., Schutzner J., Bobek V. Detection and cultivation of circulating tumor cells in gastric cancer. Cytotechnology. 2015;68:1095–1102. doi: 10.1007/s10616-015-9866-9. PubMed DOI PMC
Eliášová P., Pinkas M., Kolostova K., Gürlich R., Bobek V. Circulating tumor cells in different stages of colorectal cancer. Folia Histochem. Cytobiol. 2017;55:1–5. doi: 10.5603/FHC.a2017.0005. PubMed DOI
De Macedo M.P., De Melo F.M., Ribeiro J.D.S.S., De Mello C.A.L., Begnami M.D.F.D.S., Soares F.A., Carraro D.M., Cunha I.W. RAS mutations vary between lesions in synchronous primary Colorectal Cancer: Testing only one lesion is not sufficient to guide anti-EGFR treatment decisions. Oncoscience. 2015;2:125. doi: 10.18632/oncoscience.118. PubMed DOI PMC
Morelli M.P., Overman M.J., Dasari A., Kazmi S.M.A., Mazard T., Vilar E., Morris V.K., Lee M.S., Herron D., Eng C., et al. Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti-EGFR treatment. Ann. Oncol. 2015;26:731–736. doi: 10.1093/annonc/mdv005. PubMed DOI PMC
Vidal J., Muinelo L., Dalmases A., Jones F., Edelstein D., Iglesias M., Orrillo M., Abalo A., Rodríguez C., Brozos E., et al. Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients. Ann. Oncol. 2017;28:1325–1332. doi: 10.1093/annonc/mdx125. PubMed DOI PMC
Thierry A., Pastor B., Jiang Z.-Q., Katsiampoura A.D., Parseghian C., Loree J., Overman M.J., Sanchez C., El Messaoudi S., Ychou M., et al. Circulating DNA Demonstrates Convergent Evolution and Common Resistance Mechanisms during Treatment of Colorectal Cancer. Clin. Cancer Res. 2017;23:4578–4591. doi: 10.1158/1078-0432.CCR-17-0232. PubMed DOI PMC
Khan K., Cunningham D., Werner B., Vlachogiannis G., Spiteri I., Heide T., Mateos J.F., Vatsiou A., Lampis A., Damavandi M.D., et al. Longitudinal Liquid Biopsy and Mathematical Modeling of Clonal Evolution Forecast Time to Treatment Failure in the PROSPECT-C Phase II Colorectal Cancer Clinical Trial. Cancer Discov. 2018;8:1270–1285. doi: 10.1158/2159-8290.CD-17-0891. PubMed DOI PMC
Klein-Scory S., Maslova M., Pohl M., Eilert-Micus C., Schroers R., Schmiegel W., Baraniskin A. Significance of Liquid Biopsy for Monitoring and Therapy Decision of Colorectal Cancer. Transl. Oncol. 2018;11:213–220. doi: 10.1016/j.tranon.2017.12.010. PubMed DOI PMC
Bin Kuo Y., Chen J.-S., Fan C.-W., Li Y.-S., Chan E.-C. Comparison of KRAS mutation analysis of primary tumors and matched circulating cell-free DNA in plasmas of patients with colorectal cancer. Clin. Chim. Acta. 2014;433:284–289. doi: 10.1016/j.cca.2014.03.024. PubMed DOI
Bettegowda C., Sausen M., Leary R.J., Kinde I., Wang Y., Agrawal N., Bartlett B.R., Wang H., Luber B., Alani R.M., et al. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Sci. Transl. Med. 2014;6:224ra24. doi: 10.1126/scitranslmed.3007094. PubMed DOI PMC
Iwai T., Yamada T., Takahashi G., Takeda K., Koizumi M., Shinji S., Matsuda A., Yokoyama Y., Hara K., Ueda K., et al. Circulating cell-free long DNA fragments predict post-hepatectomy recurrence of colorectal liver metastases. Eur. J. Surg. Oncol. (EJSO) 2020;46:108–114. doi: 10.1016/j.ejso.2019.08.010. PubMed DOI
Rahbari N.N., Aigner M., Thorlund K., Mollberg N., Motschall E., Jensen K., Diener M.K., Büchler M.W., Koch M., Weitz J. Meta-analysis Shows That Detection of Circulating Tumor Cells Indicates Poor Prognosis in Patients With Colorectal Cancer. Gastroenterology. 2010;138:1714–1726.e13. doi: 10.1053/j.gastro.2010.01.008. PubMed DOI
Spindler K.-L.G., Appelt A.L., Pallisgaard N., Andersen R.F., Brandslund I., Jakobsen A. Cell-free DNA in healthy individuals, noncancerous disease and strong prognostic value in colorectal cancer. Int. J. Cancer. 2014;135:2984–2991. doi: 10.1002/ijc.28946. PubMed DOI
Tan Y., Wu H. The significant prognostic value of circulating tumor cells in colorectal cancer: A systematic review and meta-analysis. Curr. Probl. Cancer. 2018;42:95–106. doi: 10.1016/j.currproblcancer.2017.11.002. PubMed DOI
Spindler K.-L.G., Pallisgaard N., Andersen R.F., Brandslund I., Jakobsen A. Circulating Free DNA as Biomarker and Source for Mutation Detection in Metastatic Colorectal Cancer. PLoS ONE. 2015;10:e0108247. doi: 10.1371/journal.pone.0108247. PubMed DOI PMC
Reinert T., Henriksen T.V., Christensen E., Sharma S., Salari R., Sethi H., Knudsen M., Nordentoft I.K., Wu H.-T., Tin A.S., et al. Analysis of Plasma Cell-Free DNA by Ultradeep Sequencing in Patients With Stages I to III Colorectal Cancer. JAMA Oncol. 2019;5:1124. doi: 10.1001/jamaoncol.2019.0528. PubMed DOI PMC
Cohen S.J., Punt C.J., Iannotti N., Saidman B.H., Sabbath K.D., Gabrail N.Y., Picus J., Morse M., Mitchell E., Miller M.C., et al. Relationship of Circulating Tumor Cells to Tumor Response, Progression-Free Survival, and Overall Survival in Patients With Metastatic Colorectal Cancer. J. Clin. Oncol. 2008;26:3213–3221. doi: 10.1200/JCO.2007.15.8923. PubMed DOI
Connor A.A., McNamara K., Al-Sukhni E., Diskin J., Chan D., Ash C., Lowes L.E., Allan A., Zogopoulos G., Moulton C.-A., et al. Central, But Not Peripheral, Circulating Tumor Cells are Prognostic in Patients Undergoing Resection of Colorectal Cancer Liver Metastases. Ann. Surg. Oncol. 2015;23:2168–2175. doi: 10.1245/s10434-015-5038-6. PubMed DOI
Dizdar L., Flügen G., Van Dalum G., Honisch E., Neves R.P., Niederacher D., Neubauer H., Fehm T., Rehders A., Krieg A., et al. Detection of circulating tumor cells in colorectal cancer patients using the GILUPI CellCollector: Results from a prospective, single-center study. Mol. Oncol. 2019;13:1548–1558. doi: 10.1002/1878-0261.12507. PubMed DOI PMC
Wong D., Moturi S., Angkachatchai V., Mueller R., DeSantis G., Boom D.V.D., Ehrich M. Optimizing blood collection, transport and storage conditions for cell free DNA increases access to prenatal testing. Clin. Biochem. 2013;46:1099–1104. doi: 10.1016/j.clinbiochem.2013.04.023. PubMed DOI
Grölz D., Hauch S., Schlumpberger M., Guenther K., Voss T., Sprenger-Haussels M., Oelmüller U. Liquid Biopsy Preservation Solutions for Standardized Pre-Analytical Workflows—Venous Whole Blood and Plasma. Curr. Pathobiol. Rep. 2018;6:275–286. doi: 10.1007/s40139-018-0180-z. PubMed DOI PMC
Neumann M.H., Bender S., Krahn T., Schlange T. ctDNA and CTCs in Liquid Biopsy – Current Status and Where We Need to Progress. Comput. Struct. Biotechnol. J. 2018;16:190–195. doi: 10.1016/j.csbj.2018.05.002. PubMed DOI PMC
Witzig T.E., Bossy B., Kimlinger T., Roche P.C., Ingle J.N., Grant C., Donohue J., Suman V.J., Harrington D., Torre-Bueno J., et al. Detection of circulating cytokeratin-positive cells in the blood of breast cancer patients using immunomagnetic enrichment and digital microscopy. Clin. Cancer Res. 2002;8:1085–1091. PubMed
Hardingham J., Grover P., Winter M., Hewett P.J., Price T.J., Thierry B. Detection and Clinical Significance of Circulating Tumor Cells in Colorectal Cancer—20 Years of Progress. Mol. Med. 2015;21:S25–S31. doi: 10.2119/molmed.2015.00149. PubMed DOI PMC
Yang J., Mani S.A., Donaher J.L., Ramaswamy S., Itzykson R.A., Come C., Savagner P., Gitelman I., Richardson A., Weinberg R.A. Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis. Cell. 2004;117:927–939. doi: 10.1016/j.cell.2004.06.006. PubMed DOI
Torga G., Pienta K.J. Patient-Paired Sample Congruence between 2 Commercial Liquid Biopsy Tests. JAMA Oncol. 2018;4:868–870. doi: 10.1001/jamaoncol.2017.4027. PubMed DOI PMC
Vivancos A., Aranda E., Benavides M., Élez E., Gómez-España M.A., Toledano M., Alvarez M., Parrado M.R.C., García-Barberán V., Diaz-Rubio E. Comparison of the Clinical Sensitivity of the Idylla Platform and the OncoBEAM RAS CRC Assay for KRAS Mutation Detection in Liquid Biopsy Samples. Sci. Rep. 2019;9:8976. doi: 10.1038/s41598-019-45616-y. PubMed DOI PMC
Scher H.I., Morris M.J., Larson S., Heller G. Validation and clinical utility of prostate cancer biomarkers. Nat. Rev. Clin. Oncol. 2013;10:225–234. doi: 10.1038/nrclinonc.2013.30. PubMed DOI PMC
Pantel K., Hille C., Scher H.I. Circulating Tumor Cells in Prostate Cancer: From Discovery to Clinical Utility. Clin. Chem. 2019;65:87–99. doi: 10.1373/clinchem.2018.287102. PubMed DOI
Parkinson D.R., McCormack R.T., Keating S.M., Gutman S.I., Hamilton S.R., Mansfield E.A., Piper M.A., Deverka P., Frueh F.W., Jessup J.M., et al. Evidence of Clinical Utility: An Unmet Need in Molecular Diagnostics for Patients with Cancer. Clin. Cancer Res. 2014;20:1428–1444. doi: 10.1158/1078-0432.CCR-13-2961. PubMed DOI
Toledo R.A., Cubillo A., Vega E., Garralda E., Alvarez R., De La Varga L.U., Rodriguez-Pascual J., Sanchez G., Sarno F., Prieto S.H., et al. Clinical validation of prospective liquid biopsy monitoring in patients with wild-type RAS metastatic colorectal cancer treated with FOLFIRI-cetuximab. Oncotarget. 2016;8:35289–35300. doi: 10.18632/oncotarget.13311. PubMed DOI PMC
Palmirotta R., Lovero D., Silvestris E., Felici C., Quaresmini D., Cafforio P., Silvestris F. Next-generation Sequencing (NGS) Analysis on Single Circulating Tumor Cells (CTCs) with No Need of Whole-genome Amplification (WGA) Cancer Genom.-Proteom. 2017;14:173–179. doi: 10.21873/cgp.20029. PubMed DOI PMC
Ulz P., Heitzer E., Geigl J.B., Speicher M.R. Patient monitoring through liquid biopsies using circulating tumor DNA. Int. J. Cancer. 2017;141:887–896. doi: 10.1002/ijc.30759. PubMed DOI
Misale S., Di Nicolantonio F., Sartore-Bianchi A., Siena S., Bardelli A. Resistance to Anti-EGFR Therapy in Colorectal Cancer: From Heterogeneity to Convergent Evolution. Cancer Discov. 2014;4:1269–1280. doi: 10.1158/2159-8290.CD-14-0462. PubMed DOI