Advances in molecular dynamics (MD) software alongside enhanced computational power and hardware have allowed for MD simulations to significantly expand our knowledge of biomolecular structure, dynamics, and interactions. Furthermore, it has allowed for the extension of conformational sampling times from nanoseconds to the microsecond level and beyond. This has not only made convergence of conformational ensembles through comprehensive sampling possible but consequently exposed deficiencies and allowed the community to overcome limitations in the available force fields. The reproducibility and accuracy of the force fields are imperative in order to produce biologically relevant data. The Amber nucleic acid force fields have been used widely since the mid-1980s, and improvement of these force fields has been a community effort with several artifacts revealed, corrected, and reevaluated by various research groups. Here, we focus on the Amber force fields for use with double-stranded DNA and present the assessment of two recently developed force field parameter sets (OL21 and Tumuc1). Extensive MD simulations were performed with six test systems and two different water models. We observe the improvement of OL21 and Tumuc1 compared to previous generations of the Amber DNA force. We did not detect any significant improvement in the performance of Tumuc1 compared to OL21 despite the reparameterization of bonded force field terms in the former; however, we did note discrepancies in Tumuc1 when modeling Z-DNA sequences.
- MeSH
- DNA * chemie MeSH
- molekulární konformace MeSH
- reprodukovatelnost výsledků MeSH
- simulace molekulární dynamiky MeSH
- Z-DNA * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
- Z-DNA * MeSH
The dynamic processes operating on genomic DNA, such as gene expression and cellular division, lead inexorably to topological challenges in the form of entanglements, catenanes, knots, "bubbles", R-loops, and other outcomes of supercoiling and helical disruption. The resolution of toxic topological stress is the function attributed to DNA topoisomerases. A prominent example is the negative supercoiling (nsc) trailing processive enzymes such as DNA and RNA polymerases. The multiple equilibrium states that nscDNA can adopt by redistribution of helical twist and writhe include the left-handed double-helical conformation known as Z-DNA. Thirty years ago, one of our labs isolated a protein from Drosophila cells and embryos with a 100-fold greater affinity for Z-DNA than for B-DNA, and identified it as topoisomerase II (gene Top2, orthologous to the human UniProt proteins TOP2A and TOP2B). GTP increased the affinity and selectivity for Z-DNA even further and also led to inhibition of the isomerase enzymatic activity. An allosteric mechanism was proposed, in which topoII acts as a Z-DNA-binding protein (ZBP) to stabilize given states of topological (sub)domains and associated multiprotein complexes. We have now explored this possibility by comprehensive bioinformatic analyses of the available protein sequences of topoII representing organisms covering the whole tree of life. Multiple alignment of these sequences revealed an extremely high level of evolutionary conservation, including a winged-helix protein segment, here denoted as Zτ, constituting the putative structural homolog of Zα, the canonical Z-DNA/Z-RNA binding domain previously identified in the interferon-inducible RNA Adenosine-to-Inosine-editing deaminase, ADAR1p150. In contrast to Zα, which is separate from the protein segment responsible for catalysis, Zτ encompasses the active site tyrosine of topoII; a GTP-binding site and a GxxG sequence motif are in close proximity. Quantitative Zτ-Zα similarity comparisons and molecular docking with interaction scoring further supported the "B-Z-topoII hypothesis" and has led to an expanded mechanism for topoII function incorporating the recognition of Z-DNA segments ("Z-flipons") as an inherent and essential element. We further propose that the two Zτ domains of the topoII homodimer exhibit a single-turnover "conformase" activity on given G(ate) B-DNA segments ("Z-flipins"), inducing their transition to the left-handed Z-conformation. Inasmuch as the topoII-Z-DNA complexes are isomerase inactive, we infer that they fulfill important structural roles in key processes such as mitosis. Topoisomerases are preeminent targets of anti-cancer drug discovery, and we anticipate that detailed elucidation of their structural-functional interactions with Z-DNA and GTP will facilitate the design of novel, more potent and selective anti-cancer chemotherapeutic agents.
- Klíčová slova
- GTP, Z-DNA, bioinformatics, topoII, topoisomerase IIα,
- MeSH
- adenosindeaminasa metabolismus MeSH
- B-DNA * MeSH
- DNA-topoisomerasy typu II genetika metabolismus MeSH
- DNA chemie MeSH
- guanosintrifosfát MeSH
- lidé MeSH
- simulace molekulového dockingu MeSH
- Z-DNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosindeaminasa MeSH
- B-DNA * MeSH
- DNA-topoisomerasy typu II MeSH
- DNA MeSH
- guanosintrifosfát MeSH
- Z-DNA * MeSH
Approximately 13% of the human genome at certain motifs have the potential to form noncanonical (non-B) DNA structures (e.g., G-quadruplexes, cruciforms, and Z-DNA), which regulate many cellular processes but also affect the activity of polymerases and helicases. Because sequencing technologies use these enzymes, they might possess increased errors at non-B structures. To evaluate this, we analyzed error rates, read depth, and base quality of Illumina, Pacific Biosciences (PacBio) HiFi, and Oxford Nanopore Technologies (ONT) sequencing at non-B motifs. All technologies showed altered sequencing success for most non-B motif types, although this could be owing to several factors, including structure formation, biased GC content, and the presence of homopolymers. Single-nucleotide mismatch errors had low biases in HiFi and ONT for all non-B motif types but were increased for G-quadruplexes and Z-DNA in all three technologies. Deletion errors were increased for all non-B types but Z-DNA in Illumina and HiFi, as well as only for G-quadruplexes in ONT. Insertion errors for non-B motifs were highly, moderately, and slightly elevated in Illumina, HiFi, and ONT, respectively. Additionally, we developed a probabilistic approach to determine the number of false positives at non-B motifs depending on sample size and variant frequency, and applied it to publicly available data sets (1000 Genomes, Simons Genome Diversity Project, and gnomAD). We conclude that elevated sequencing errors at non-B DNA motifs should be considered in low-read-depth studies (single-cell, ancient DNA, and pooled-sample population sequencing) and in scoring rare variants. Combining technologies should maximize sequencing accuracy in future studies of non-B DNA.
- MeSH
- DNA genetika MeSH
- lidé MeSH
- nanopóry * MeSH
- nukleotidové motivy MeSH
- sekvenční analýza DNA MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Z-DNA * MeSH
- zastoupení bazí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA MeSH
- Z-DNA * MeSH
Z-DNA and Z-RNA are functionally important left-handed structures of nucleic acids, which play a significant role in several molecular and biological processes including DNA replication, gene expression regulation and viral nucleic acid sensing. Most proteins that have been proven to interact with Z-DNA/Z-RNA contain the so-called Zα domain, which is structurally well conserved. To date, only eight proteins with Zα domain have been described within a few organisms (including human, mouse, Danio rerio, Trypanosoma brucei and some viruses). Therefore, this paper aimed to search for new Z-DNA/Z-RNA binding proteins in the complete PDB structures database and from the AlphaFold2 protein models. A structure-based similarity search found 14 proteins with highly similar Zα domain structure in experimentally-defined proteins and 185 proteins with a putative Zα domain using the AlphaFold2 models. Structure-based alignment and molecular docking confirmed high functional conservation of amino acids involved in Z-DNA/Z-RNA, suggesting that Z-DNA/Z-RNA recognition may play an important role in a variety of cellular processes.
- Klíčová slova
- Z-DNA, Z-RNA, Zα domain, bioinformatics, protein binding,
- MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- interakční proteinové domény a motivy * MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- molekulární modely * MeSH
- proteiny vázající RNA chemie metabolismus MeSH
- RNA chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Z-DNA chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- proteiny vázající RNA MeSH
- RNA MeSH
- Z-DNA MeSH
Although current AMBER force fields are relatively accurate for canonical B-DNA, many noncanonical structures are still described incorrectly. As noncanonical motifs are attracting increasing attention due to the role they play in living organisms, further improvement is desirable. Here, we have chosen the Z-DNA molecule, which can be considered a touchstone of the universality of empirical force fields, since the noncanonical α and γ backbone conformations native to Z-DNA are also found in protein-DNA complexes, i-motif DNA, and other noncanonical DNAs. We show that spurious α/γ conformations occurring in simulations with current AMBER force fields, OL15 and bsc1, are largely due to inaccurate α/γ parametrization. Moreover, stabilization of native Z-DNA substates involving γ = trans conformations appears to be in conflict with the correct description of the canonical B-DNA structure. Because the balance of the native and spurious conformations is influenced by nonadditive effects, this is a difficult case for an additive dihedral energy scheme such as AMBER. We propose new α/γ parameters, denoted OL21, and show that they improve the stability of native α/γ Z-DNA substates while keeping the canonical DNA description virtually unchanged, thus representing a reasonable compromise within the additive force field framework. Although further extensive testing is needed, the new modification appears to be a promising step toward a more reliable description of noncanonical DNA motifs and provides the best performance for Z-DNA molecules among current AMBER force fields.
- MeSH
- B-DNA chemie MeSH
- konformace nukleové kyseliny MeSH
- simulace molekulární dynamiky MeSH
- Z-DNA * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- B-DNA MeSH
- Z-DNA * MeSH
Nucleic acid-binding proteins are traditionally divided into two categories: With the ability to bind DNA or RNA. In the light of new knowledge, such categorizing should be overcome because a large proportion of proteins can bind both DNA and RNA. Another even more important features of nucleic acid-binding proteins are so-called sequence or structure specificities. Proteins able to bind nucleic acids in a sequence-specific manner usually contain one or more of the well-defined structural motifs (zinc-fingers, leucine zipper, helix-turn-helix, or helix-loop-helix). In contrast, many proteins do not recognize nucleic acid sequence but rather local DNA or RNA structures (G-quadruplexes, i-motifs, triplexes, cruciforms, left-handed DNA/RNA form, and others). Finally, there are also proteins recognizing both sequence and local structural properties of nucleic acids (e.g., famous tumor suppressor p53). In this mini-review, we aim to summarize current knowledge about the amino acid composition of various types of nucleic acid-binding proteins with a special focus on significant enrichment and/or depletion in each category.
- Klíčová slova
- DNA, G-quadruplex, RNA, Z-DNA, Z-RNA, amino acid composition, cruciform, i-motif, protein binding, triplex,
- MeSH
- DNA vazebné proteiny genetika MeSH
- DNA genetika ultrastruktura MeSH
- G-kvadruplexy MeSH
- konformace nukleové kyseliny * MeSH
- leucinové zipy genetika MeSH
- lidé MeSH
- nukleoproteiny genetika ultrastruktura MeSH
- RNA chemie ultrastruktura MeSH
- sekvence aminokyselin genetika MeSH
- transportní proteiny genetika ultrastruktura MeSH
- Z-DNA MeSH
- zinkové prsty genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA MeSH
- nukleoproteiny MeSH
- RNA MeSH
- transportní proteiny MeSH
- Z-DNA MeSH
Current interest in lone-pair⋅⋅⋅π (lp⋅⋅⋅π) interactions is gaining momentum in biochemistry and (supramolecular) chemistry. However, the physicochemical origin of the exceptionally short (ca. 2.8 Å) oxygen-to-nucleobase plane distances observed in prototypical Z-DNA CpG steps remains unclear. High-level quantum mechanical calculations, including SAPT2+3 interaction energy decompositions, demonstrate that lp⋅⋅⋅π contacts do not result from n→π* orbital overlaps but from weak dispersion and electrostatic interactions combined with stereochemical effects imposed by the locally strained structural context. They also suggest that the carbon van der Waals (vdW) radii, originally derived for sp3 carbons, should not be used for smaller sp2 carbons attached to electron-withdrawing groups. Using a more adapted carbon vdW radius results in these lp⋅⋅⋅π contacts being no longer of the sub-vdW type. These findings challenge the whole lp⋅⋅⋅π concept that refers to elusive orbital interactions that fail to explain short interatomic contact distances.
- Klíčová slova
- Z-DNA, lp⋅⋅⋅π interactions, molecular recognition, non-covalent interactions, van der Waals radii,
- MeSH
- hydrofobní a hydrofilní interakce MeSH
- kvantová teorie * MeSH
- uhlík chemie MeSH
- Z-DNA chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- uhlík MeSH
- Z-DNA MeSH
Z-DNA duplexes are a particularly complicated test case for current force fields. We performed a set of explicit solvent molecular dynamics (MD) simulations with various AMBER force field parametrizations including our recent refinements of the ε/ζ and glycosidic torsions. None of these force fields described the ZI/ZII and other backbone substates correctly, and all of them underpredicted the population of the important ZI substate. We show that this underprediction can be attributed to an inaccurate potential for the sugar-phosphate backbone torsion angle β. We suggest a refinement of this potential, β(OL1), which was derived using our recently introduced methodology that includes conformation-dependent solvation effects. The new potential significantly increases the stability of the dominant ZI backbone substate and improves the overall description of the Z-DNA backbone. It also has a positive (albeit small) impact on another important DNA form, the antiparallel guanine quadruplex (G-DNA), and improves the description of the canonical B-DNA backbone by increasing the population of BII backbone substates, providing a better agreement with experiment. We recommend using β(OL1) in combination with our previously introduced corrections, εζ(OL1) and χ(OL4), (the combination being named OL15) as a possible alternative to the current β torsion potential for more accurate modeling of nucleic acids.
- MeSH
- B-DNA chemie MeSH
- fosfáty chemie MeSH
- konformace nukleové kyseliny MeSH
- kvantová teorie MeSH
- polysacharidy chemie MeSH
- simulace molekulární dynamiky MeSH
- voda chemie MeSH
- Z-DNA chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- B-DNA MeSH
- fosfáty MeSH
- polysacharidy MeSH
- voda MeSH
- Z-DNA MeSH
Sex chromosomes are an ideal system to study processes connected with suppressed recombination. We found evidence of microsatellite expansion, on the relatively young Y chromosome of the dioecious plant sorrel (Rumex acetosa, XY1Y2 system), but no such expansion on the more ancient Y chromosomes of liverwort (Marchantia polymorpha) and human. The most expanding motifs were AC and AAC, which also showed periodicity of array length, indicating the importance of beginnings and ends of arrays. Our data indicate that abundance of microsatellites in genomes depends on the inherent expansion potential of specific motifs, which could be related to their stability and ability to adopt unusual DNA conformations. We also found that the abundance of microsatellites is higher in the neighborhood of transposable elements (TEs) suggesting that microsatellites are probably targets for TE insertions. This evidence suggests that microsatellite expansion is an early event shaping the Y chromosome where this process is not opposed by recombination, while accumulation of TEs and chromosome shrinkage predominate later.
- MeSH
- A-DNA genetika MeSH
- chromozomy rostlin genetika MeSH
- duplikace genu MeSH
- hybridizace in situ fluorescenční MeSH
- lidé MeSH
- lidský chromozom Y genetika MeSH
- Marchantia genetika MeSH
- metafáze genetika MeSH
- mikrosatelitní repetice genetika MeSH
- modely genetické MeSH
- molekulární evoluce * MeSH
- periodicita MeSH
- Rumex genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- transpozibilní elementy DNA genetika MeSH
- Z-DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- A-DNA MeSH
- transpozibilní elementy DNA MeSH
- Z-DNA MeSH
This work is a continuation of our effort to determine the structure responsible for expansion of the (CGG)(n) motif that results in fragile X chromosome syndrome. In our previous report, we demonstrated that the structure adopted by an oligonucleotide with this repeat sequence is not a quadruplex as was suggested by others. Here we demonstrate that (CGG) runs adopt another anomalous arrangement-a left-handed Z-DNA structure. The Z-DNA formation was induced by high salt and millimolar concentrations of Ni(2+) ions and likelihood of its formation increased with increasing number of repeats. In an oligonucleotide in which the CGG runs were interrupted by AGG triplets, as is observed in genomes of healthy individuals, the hairpin conformation was stabilized and Z-DNA formation was hindered. We show here that methylation of the (CGG) runs markedly stabilized Z-DNA formation. We hypothesize that rather than in the expansion process the Z-DNA may be formed by long, expanded (CGG) stretches that become hypermethylated; this would inhibit transcription resulting in disease.
- MeSH
- cirkulární dichroismus MeSH
- fragilní místa na chromozomu genetika MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- lidské chromozomy X genetika MeSH
- sekvence nukleotidů MeSH
- syndrom fragilního X genetika MeSH
- trinukleotidové repetice MeSH
- Z-DNA chemie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Z-DNA MeSH