BACKGROUND: Strigolactones (SLs) have a vast number of ecological implications because of the broad spectrum of their biological activities. Unfortunately, the limited availability of SLs restricts their applicability for the benefit of humanity and renders synthesis the only option for their production. However, the structural complexity of SLs impedes their economical synthesis, which is unfeasible on a large scale. Synthesis of SL analogues and mimics with a simpler structure, but with retention of bioactivity, is the solution to this problem. RESULTS: Here, we present eight new hybrid-type SL analogues derived from auxin, synthesized via coupling of auxin ester [ethyl 2-(1H-indol-3-yl)acetate] and of ethyl 2-phenylacetate with four D-rings (mono-, two di- and trimethylated). The new hybrid-type SL analogues were bioassayed to assess the germination activity of seeds of the parasitic weeds Striga hermonthica, Orobanche minor and Phelipanche ramosa using the classical method of counting germinated seeds and a colorimetric method. The bioassays revealed that analogues with a natural monomethylated D-ring had appreciable to good activity towards the three species and were the most active derivatives. By contrast, derivatives with the trimethylated D-ring showed no activity. The dimethylated derivatives (2,4-dimethyl and 3,4-dimethyl) were slightly active, especially towards P. ramosa. CONCLUSIONS: New hybrid-type analogues derived from auxins have been prepared. These analogues may be attractive as potential suicidal germination agents for parasitic weed control because of their ease of preparation and relevant bioactivity. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
- Klíčová slova
- auxins, strigolactone analogues, strigolactones, suicidal germination,
- MeSH
- klíčení účinky léků MeSH
- kontrola plevele metody MeSH
- kyseliny indoloctové chemie MeSH
- laktony chemická syntéza MeSH
- Orobanchaceae účinky léků fyziologie MeSH
- Orobanche účinky léků fyziologie MeSH
- plevel účinky léků fyziologie MeSH
- semena rostlinná účinky léků fyziologie MeSH
- Striga účinky léků fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- laktony MeSH
Strigolactones are a particular class of plant metabolites with diverse biological functions starting from the stimulation of parasitic seed germination to phytohormonal activity. The expansion of parasitic weeds in the fields of developing countries is threatening the food supply and calls for simple procedures to combat these weeds. Strigolactone analogues represent a promising approach for such control through suicidal germination, i.e., parasitic seed germination without the presence of the host causing parasite death. In the present work, the synthesis of resorcinol-type strigolactone mimics related to debranones is reported. These compounds were highly stable even at alkaline pH levels and able to induce seed germination of parasitic plants Striga hermonthica and Phelipanche ramosa at low concentrations, EC50 ≈ 2 × 10-7 M ( Striga) and EC50 ≈ 2 × 10-9 M ( Phelipanche). On the other hand, the mimics had no significant effect on root architecture of Arabidopsis plants, suggesting a selective activity for parasitic seed germination, making them a primary target as suicidal germinators.
- MeSH
- klíčení účinky léků MeSH
- laktony chemie farmakologie MeSH
- Orobanchaceae embryologie fyziologie MeSH
- regulátory růstu rostlin farmakologie MeSH
- resorcinoly chemie MeSH
- semena rostlinná účinky léků fyziologie MeSH
- Striga embryologie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- laktony MeSH
- regulátory růstu rostlin MeSH
- resorcinol MeSH Prohlížeč
- resorcinoly MeSH