Carabids are generalist predators that contribute to the agricultural ecosystem service of seedbank regulation via weed seed predation. To facilitate adoption of this ecosystem services by farmers, knowledge of weed seed predation and the resilience of seedbank regulation with co-varying availability of alternative prey is crucial. Using assessments of the seedbank and predation on seed cards in 57 cereal fields across Europe, we demonstrate a regulatory effect on the soil seedbank, at a continental scale, by groups formed of omnivore, seed-eating (granivore + omnivore) and all species of carabids just prior to the crop-harvest. Regulation was associated with a positive relationship between the activity-density of carabids and seed predation, as measured on seed cards. We found that per capita seed consumption on the cards co-varied negatively with the biomass of alternative prey, i.e. Aphididae, Collembola and total alternative prey biomass. Our results underline the importance of weed seedbank regulation by carabids, across geographically significant scales, and indicate that the effectiveness of this biocontrol may depend on the availability of alternative prey that disrupt the weed seed predation.
- MeSH
- biomasa MeSH
- brouci fyziologie MeSH
- ekologie MeSH
- ekosystém * MeSH
- ječmen (rod) MeSH
- jedlá semena MeSH
- lineární modely MeSH
- plevel fyziologie MeSH
- predátorské chování MeSH
- pšenice MeSH
- semena rostlinná fyziologie MeSH
- zemědělství metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Strigolactones (SLs) have a vast number of ecological implications because of the broad spectrum of their biological activities. Unfortunately, the limited availability of SLs restricts their applicability for the benefit of humanity and renders synthesis the only option for their production. However, the structural complexity of SLs impedes their economical synthesis, which is unfeasible on a large scale. Synthesis of SL analogues and mimics with a simpler structure, but with retention of bioactivity, is the solution to this problem. RESULTS: Here, we present eight new hybrid-type SL analogues derived from auxin, synthesized via coupling of auxin ester [ethyl 2-(1H-indol-3-yl)acetate] and of ethyl 2-phenylacetate with four D-rings (mono-, two di- and trimethylated). The new hybrid-type SL analogues were bioassayed to assess the germination activity of seeds of the parasitic weeds Striga hermonthica, Orobanche minor and Phelipanche ramosa using the classical method of counting germinated seeds and a colorimetric method. The bioassays revealed that analogues with a natural monomethylated D-ring had appreciable to good activity towards the three species and were the most active derivatives. By contrast, derivatives with the trimethylated D-ring showed no activity. The dimethylated derivatives (2,4-dimethyl and 3,4-dimethyl) were slightly active, especially towards P. ramosa. CONCLUSIONS: New hybrid-type analogues derived from auxins have been prepared. These analogues may be attractive as potential suicidal germination agents for parasitic weed control because of their ease of preparation and relevant bioactivity. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
- Klíčová slova
- auxins, strigolactone analogues, strigolactones, suicidal germination,
- MeSH
- klíčení účinky léků MeSH
- kontrola plevele metody MeSH
- kyseliny indoloctové chemie MeSH
- laktony chemická syntéza MeSH
- Orobanchaceae účinky léků fyziologie MeSH
- Orobanche účinky léků fyziologie MeSH
- plevel účinky léků fyziologie MeSH
- semena rostlinná účinky léků fyziologie MeSH
- Striga účinky léků fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- laktony MeSH