Tissue inhibitors of metalloproteinases (TIMPs) are the major endogenous regulators of metalloproteinase activity in tissues. TIMPs are able to inhibit activity of all known matrix metalloproteinases (MMPs) and thus participate in controlling extracellular matrix synthesis and degradation. We showed previously elevated expressions of MMPs in the rabbit corneal epithelium upon UVB exposure and suggested that these enzymes might be involved in corneal destruction caused by excessive proteolysis. The aim of this study was to investigate TIMPs in the corneal epithelium after UV irradiation using immunohistochemical and biochemical methods. We found that as compared to control rabbit corneas where relatively high levels of TIMPs were present in the epithelium, repeated irradiation of the cornea with UVB rays (not with UVA rays of similar doses) significantly decreased TIMPs in corneal epithelial cells. The results of this study point to the suggestion that the decrease in TIMPs in the corneal epithelium after UVB irradiation contributes to increased proteolytic activity of MMPs in UVB-irradiated corneal epithelium found previously.
- MeSH
- imunohistochemie MeSH
- králíci MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- matrixové metaloproteinasy genetika metabolismus MeSH
- messenger RNA genetika metabolismus MeSH
- rohovkový epitel enzymologie účinky záření MeSH
- ultrafialové záření * MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- matrixové metaloproteinasy MeSH
- messenger RNA MeSH
Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in tissue remodeling and wound healing. These enzymes degrade and also synthesize components of the extracellular matrix. Overexpression of MMPs results in excessive extracellular matrix degradation and tissue destruction. In the cornea, destructive processes may lead to scarring and loss of vision. In this study MMPs (types 1, 2, 7, 8, 9 and 14) were examined immunohistochemically in the normal rabbit corneal epithelium and in epithelium irradiated in vivo with similar doses of UVB or UVA radiation (UVB rays 312 nm, UVA rays 365 nm, daily dose 1.01 J/cm(2) for four days). Results show that MMPs studied revealed low expression in the normal corneal epithelium, whereas after repeated UVB irradiation the expression of MMPs was significantly increased in the corneal epithelium, in ascending order: MMP-2, MMP-9, MMP-1, and MMP-7 with MMP-8. In contrast, compared to normal corneas, repeated UVA radiation did not significantly change the expression of MMPs in the irradiated corneal epithelium. MMP-14 was expressed at very low levels in all studied corneas, whereas no significant changes were detected upon UV exposure. In conclusion, UV radiation of shorter wavelength (UVB) induced an increase in expression of all MMPs except MMP-14. It is suggested that overexpression of MMPs in the corneal epithelium contributes to the damaging effect of UVB radiation to the cornea.
- MeSH
- imunohistochemie MeSH
- králíci MeSH
- matrixové metaloproteinasy analýza biosyntéza MeSH
- regulace genové exprese enzymů účinky záření MeSH
- rohovkový epitel enzymologie účinky záření MeSH
- ultrafialové záření * MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- matrixové metaloproteinasy MeSH
BACKGROUND: Trehalose, a nonreducing disaccharide of glucose, is synthesized as a stress response factor when cells are exposed to stressful conditions. In the cornea, oxidative stress plays the key role in the development of acute corneal inflammatory response to UVB rays, photokeratitis. We found previously that trehalose reduced UVB-induced oxidative effects on the formation of cytotoxic peroxynitrite, apoptotic corneal epithelial cell death and changes in corneal optics. The aim of the present study was to examine whether trehalose might inhibit UVB-mediated proinflammatory cytokine and matrix metalloproteinase induction and the development of an antioxidant/pro-oxidant imbalance in the corneal epithelium, changes found previously to be strongly involved in the acute corneal UVB-induced inflammation. The expression of heat shock protein 70 as a potential biomarker for corneal UVB-induced damage was also examined. METHODS: The corneas of New Zealand white rabbits were irradiated with UVB rays, 312 nm, daily dose of 0.5 J/cm(2) for 4 days. During the irradiation, trehalose drops were applied on the right eye and buffered saline on the left eye. One day after the end of irradiations, the animals were killed and the corneas examined immunohistochemically for the expression of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), pro-oxidant xanthine oxidoreductase/xanthine oxidase, proinflammatory cytokines (interleukin-6, interleukin-8), matrix metalloproteinase-9 and heat shock protein 70. RESULTS: After buffered saline treatment during UVB irradiation, an antioxidant/pro-oxidant imbalance appeared in the corneal epithelium: The expression of antioxidant enzymes was highly reduced, whereas the expression of pro-oxidant xanthine oxidase was increased. The pronounced expression of pro-inflammatory cytokines, matrix metalloproteinase and heat shock protein 70 was found in the UVB-irradiated corneal epithelium. Trehalose application significantly suppressed all the above-mentioned UVB-induced corneal disturbances. CONCLUSIONS: Trehalose favorably influenced the oxidative damage of the cornea caused by UVB rays. Trehalose suppressed proinflammatory cytokine induction. It is suggested that suppression of proinflammatory cytokines contributed strongly to reduced matrix metalloproteinase and xanthine oxidase expression in the UVB-irradiated corneal epithelium and to the decreased development of an antioxidant/pro-oxidant imbalance. The overexpression of heat shock protein 70 found in UVB-irradiated cornea after buffered saline treatment was reduced after trehalose application.
- MeSH
- antioxidancia MeSH
- biologické markery metabolismus MeSH
- cytokiny metabolismus MeSH
- experimentální radiační poranění farmakoterapie enzymologie MeSH
- imunoenzymatické techniky MeSH
- králíci MeSH
- matrixová metaloproteinasa 9 metabolismus MeSH
- oxidační stres účinky léků MeSH
- oxidancia MeSH
- oxidoreduktasy metabolismus MeSH
- počítačové zpracování obrazu MeSH
- proteiny tepelného šoku HSP70 metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rohovkový epitel enzymologie účinky záření MeSH
- trehalosa farmakologie MeSH
- ultrafialové záření škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- biologické markery MeSH
- cytokiny MeSH
- matrixová metaloproteinasa 9 MeSH
- oxidancia MeSH
- oxidoreduktasy MeSH
- proteiny tepelného šoku HSP70 MeSH
- reaktivní formy kyslíku MeSH
- trehalosa MeSH
Under normal conditions, antioxidants at the corneal surface are balanced with the production of reactive oxygen species without any toxic effects. Danger from oxidative stress appears when natural antioxidants are overwhelmed leading to antioxidant/prooxidant imbalance. The aim of the present study was to examine the activities of enzymes contributing to the antioxidant/prooxidant balance in normal corneal epithelium of various mammals. The enzyme activities of antioxidant superoxide dismutase and glutathione peroxidase, as well as prooxidant xanthine oxidoreductase/xanthine oxidase were examined using biochemical methods. Results show that superoxide dismutase activity is high in rabbits and guinea pigs, whereas in pigs the activity is low and in cows it is nearly absent. In contrast, glutathione peroxidase activity is high in cows, pigs and rabbits, whereas in guinea pigs the activity is low. As far as prooxidant enzymes are concerned, elevated xanthine oxidoreductase/xanthine oxidase activities were found in rabbits, lower activities in guinea pigs, very low activity in cows and no activity in pigs. In conclusion, the above results demonstrate inter-species variations in activities of enzymes participating in antioxidant/prooxidant balance in the corneal epithelium. It is suggested that the levels of antioxidant and prooxidant enzymes studied in the corneal epithelium might be associated with the diurnal or nocturnal activity of animals. UV rays decompose hydrogen peroxide to damaging hydroxyl radicals and perhaps for this reason large animals with diurnal activity (cow, pig) require more effective peroxide removal (high glutathione peroxidase activity) together with the suppression of peroxide production (low superoxide dismutase activity, low xanthine oxidoreductase activity).
- MeSH
- antioxidancia metabolismus MeSH
- glutathionperoxidasa metabolismus MeSH
- králíci MeSH
- morčata MeSH
- prasata MeSH
- rohovkový epitel enzymologie MeSH
- skot MeSH
- superoxiddismutasa metabolismus MeSH
- tkáňové extrakty chemie MeSH
- xanthinoxidasa metabolismus MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- morčata MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- antioxidancia MeSH
- glutathionperoxidasa MeSH
- superoxiddismutasa MeSH
- tkáňové extrakty MeSH
- xanthinoxidasa MeSH
The activities of superoxide dismutase, glutathione peroxidase (GPX) and catalase--the enzymatic scavengers of reactive oxygen species and the activities of xanthine oxidoreductase and xanthine oxidase, an enzyme known to generate reactive oxygen species, were studied in the corneas of normal rabbit eyes of various ages (1 month--young eyes; 4-9.5 months--young adult eyes; 2.0-2.75 years--middle aged eyes; 3.0-5.0 years--aged eyes). The activities of GPX, superoxide dismutase, xanthine oxidoreductase and xanthine oxidase were investigated biochemically in the scraped corneal epithelium. Catalase activity was detected histochemically in the corneal epithelium and endothelium. The results show that young corneas revealed lower activities of all the antioxidant enzymes investigated than did young adult corneas, in which enzymatic activities reached their maximum. In middle-aged corneas, GPX and catalase activities remained approximately at the same levels as seen in young adult corneas, whereas superoxide dismutase activity was decreased. In aged corneas, the activities of all antioxidant enzymes were dramatically decreased or even lost (catalase activity in the corneal endothelium). In contrast, xanthine oxidoreductase activity only slightly decreased with age and the xanthine oxidase proportion of total xanthine oxidoreductase remained unchanged. GPX, superoxide dismutase and catalase are important antioxidant enzymes protecting the cornea against the oxidative damage. Because the activities of these enzymes are lower in young animals and greatly reduced in aged animals, it is suggested that young and particularly aged corneas might be more susceptible to oxidative stress than are young adult corneas. This presumption is supported by the fact that the activities of prooxidant enzymes (xanthine oxidoreductase/xanthine oxidase) are only slightly decreased in aged corneas as compared to young adult corneas so that some imbalance between antioxidant and prooxidant enzymes exists already in the normal aged corneas.
- MeSH
- glutathionperoxidasa metabolismus MeSH
- katalasa metabolismus MeSH
- králíci MeSH
- oxidační stres fyziologie MeSH
- oxidoreduktasy metabolismus MeSH
- rohovka enzymologie MeSH
- rohovkový epitel enzymologie MeSH
- stárnutí metabolismus MeSH
- superoxiddismutasa metabolismus MeSH
- xanthinoxidasa metabolismus MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glutathionperoxidasa MeSH
- katalasa MeSH
- oxidoreduktasy MeSH
- superoxiddismutasa MeSH
- xanthinoxidasa MeSH
We have previously found that xanthine oxidase (one form of xanthine oxidoreductase that generates reactive oxygen species, such as superoxide radicals and hydrogen peroxide) is present in corneal epithelium of normal rabbit eye. It was suggested that the reactive oxygen species contribute to additional eye damage related to prolonged continuous contact lens wear and irradiation of the eye with UV-B light. To further explore the potential danger of xanthine oxidase as a source of reactive oxygen species, we have examined in the present paper whether xanthine oxidoreductase and xanthine oxidase are present in corneal epithelium of other mammalian species, employing immunohistochemical and enzyme histochemical methods. In corneal epithelium of normal eyes of ox, pig, guinea-pig, and rat xanthine oxidoreductase activity was detected by the tetrazolium salt reduction method and xanthine oxidase activity was localized by a method based on cerium ions capturing hydrogen peroxide. For the immunohistochemical demonstration of the enzymes, rabbit anti-bovine xanthine oxidase antibody, rabbit anti-human xanthine oxidase antibody and monoclonal mouse anti-human xanthine oxidase/xanthine dehydrogenase/aldehyde oxidase antibody were used. The immunohistochemical and enzyme histochemical results show that xanthine oxidoreductase and xanthine oxidase are present both as proteins and as active enzymes in the corneal epithelium of all animals studied. It is hypothesized that under various pathological states, xanthine oxidase-generated reactive oxygen species might contribute to eye damage.
- MeSH
- histocytochemie MeSH
- imunohistochemie MeSH
- krysa rodu Rattus MeSH
- morčata MeSH
- prasata MeSH
- rohovkový epitel enzymologie MeSH
- skot MeSH
- xanthindehydrogenasa analýza MeSH
- xanthinoxidasa analýza MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- morčata MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- xanthindehydrogenasa MeSH
- xanthinoxidasa MeSH
The corneas of albino rabbits were irradiated (5 min exposure once a day) with UVB rays (312 nm) for 4 days (shorter procedure) or 8 days (longer procedure). The eyes were examined microbiologically and only the corneas of sterile eyes or eyes with non-pathogenic microbes were employed. Histochemically, the activities of reactive oxygen species (ROS)-generating oxidases (xanthine oxidase, D-amino acid oxidase and alpha-hydroxy acid oxidase) were examined in cryostat sections of the whole corneas. Biochemically, the activity of xanthine oxidoreductase/xanthine oxidase was investigated in the scraped corneal epithelium. UVB rays significantly changed enzyme activities in the corneas. In comparison to the normal cornea, where of ROS-generating oxidases only xanthine oxidase showed significant activity in the corneal epithelium and endothelium, D-amino acid oxidase was very low and alpha-hydroxy acid oxidase could not be detected at all, in the cornea repeatedly irradiated with UVB rays, increased activities of xanthine oxidase and D-amino acid oxidase were observed in all corneal layers. Only after the longer procedure the xanthine oxidase and D-amino acid oxidase activities were decreased in the thinned epithelium in parallel with its morphological disturbances. Further results show that the xanthine oxidase/xanthine oxidoreductase ratio increased in the epithelium together with the repeated irradiation with UVB rays. This might suggest that xanthine dehydrogenase is converted to xanthine oxidase. However, in comparison to the normal corneal epithelium, the total amount of xanthine oxidoredutase was decreased in the irradiated epithelium. It is presumed that xanthine oxidoreductase might be released extracellularly (into tears) or the enzyme molecules were denatured due to UVB rays (particulary after the longer procedure). Comparative histochemical and biochemical findings suggest that reactive oxygen species-generating oxidases (xanthine oxidase, D-amino acid oxidase) contribute to the corneal damage evoked by UVB rays.
- MeSH
- alkoholoxidoreduktasy metabolismus účinky záření MeSH
- časové faktory MeSH
- histocytochemie MeSH
- inhibitory enzymů farmakologie MeSH
- králíci MeSH
- oxidasa D-aminokyselin metabolismus účinky záření MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rohovka enzymologie účinky záření MeSH
- rohovkový endotel cytologie enzymologie patologie MeSH
- rohovkový epitel cytologie enzymologie patologie MeSH
- scavengery volných radikálů farmakologie MeSH
- senzitivita a specificita MeSH
- ultrafialové záření škodlivé účinky MeSH
- xanthinoxidasa metabolismus účinky záření MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- alkoholoxidoreduktasy MeSH
- inhibitory enzymů MeSH
- L-2-hydroxyacid oxidase MeSH Prohlížeč
- oxidasa D-aminokyselin MeSH
- reaktivní formy kyslíku MeSH
- scavengery volných radikálů MeSH
- xanthinoxidasa MeSH
In this study, the effects of UVA and UVB rays on antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) were examined in the corneal epithelium. The corneas of albino rabbits were irradiated with a UV lamp generating UVA (365 nm wavelength) or UVB rays (312 nm wavelength), 1 x daily for 5 min, from a distance of 0.03 m, over 4 days (shorter procedure) or 8 days (longer procedure). In contrast to UVA rays, which did not evoke significant disturbances, UVB rays changed the activities of antioxidant enzymes. The longer repeated irradiation with UVB rays was performed, the deeper the observed decrease in antioxidant enzymes. The shorter procedure evoked a more profound decrease of glutathione peroxidase and catalase (the enzymes cleaving hydrogen peroxide) than of superoxide dismutase, an enzyme scavenging superoxide radical and producing hydrogen peroxide during the dismutation reaction of a superoxide free radical. This may contribute to an insufficient hydrogen peroxide cleavage at the corneal surface and danger to the cornea from oxidative damage. After the longer procedure (UVB rays), the activities of all antioxidant enzymes were very low or completely absent. In conclusion, repeated irradiation of the cornea with UVB rays evokes a deficiency in antioxidant enzymes in the corneal epithelium, which very probably contributes to the damage of the cornea (and possibly also deeper parts of the eye) from UVB rays and the reactive oxygen products generated by them.
- MeSH
- glutathionperoxidasa metabolismus MeSH
- imunohistochemie MeSH
- katalasa metabolismus MeSH
- králíci MeSH
- rohovkový epitel enzymologie metabolismus účinky záření MeSH
- superoxiddismutasa metabolismus MeSH
- techniky in vitro MeSH
- ultrafialové záření MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glutathionperoxidasa MeSH
- katalasa MeSH
- superoxiddismutasa MeSH
Prolonged use of contact lenses (for 14 days) evoked an imbalance between the activity of xanthine oxidase (an enzyme belonging to reactive oxygen species-generating oxidases) and catalase (an enzyme belonging to reactive oxygen species-scavenging oxidases) in the corneal epithelium of rabbits. The activity of catalase decreased, while xanthine oxidase activity was very high. Of other enzymes studied in the corneal epithelium, the activities of xanthine oxidoreductase, glucoso-6-phosphate dehydrogenase and succinate dehydrogenase were decreased. In contrast, the activities of lactate dehydrogenase and lysosomal hydrolases (acid beta-galactosidase, dipeptidyl peptidase II) were increased and appeared in animals sacrificed immediately after contact lens removal. In rabbits sacrificed later (after 1 h), an additional increase of lactate dehydrogenase and lysosomal hydrolase activities developed in the superficial layers of the corneal epithelium. Catalase supplementation during use of contact lenses prevented both the significant decrease of catalase activity in the corneal epithelium and the development of additional epithelial damage. In contrast, topical treatment with 3-aminotriazole (an inhibitor of catalase) resulted in the nearly complete loss of catalase activity in the corneal epithelium and the appearance of more serious epithelial damage. We conclude that ROS generated by xanthine oxidase induce additional damage of the corneal epithelium related to the use of contact lenses.
- MeSH
- katalasa metabolismus MeSH
- králíci MeSH
- měkké kontaktní čočky škodlivé účinky MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rohovkový epitel enzymologie patologie MeSH
- xanthinoxidasa účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- katalasa MeSH
- reaktivní formy kyslíku MeSH
- xanthinoxidasa MeSH