Nejvíce citovaný článek - PubMed ID 10545106
Heat shock factor 1 (HSF1) is the master orchestrator of the heat shock response (HSR), a critical process for maintaining cellular health and protein homeostasis. These effects are achieved through rapid expression of molecular chaperones, the heat shock proteins (HSPs), which ensure correct protein folding, repair, degradation and stabilization of multiprotein complexes. In addition to its role in the HSR, HSF1 influences the cell cycle, including processes such as S phase progression and regulation of the p53 pathway, highlighting its importance in cellular protein synthesis and division. While HSF1 activity offers neuroprotective benefits in neurodegenerative diseases, its proteome-stabilizing function may also reinforce tumorigenic transformation. HSF1 overexpression in many types of cancer reportedly enhances cell growth enables survival, alters metabolism, weakens immune response and promotes angiogenesis or epithelial-mesenchymal transition (EMT) as these cells enter a form of "HSF1 addiction". Furthermore, the client proteins of HSF1-regulated chaperones, particularly Hsp90, include numerous key players in classical tumorigenic pathways. HSF1 thus presents a promising therapeutic target for cancer treatment, potentially in combination with HSP inhibitors to alleviate typical initiation of HSR upon their use.
- Klíčová slova
- Cancer, Cell division, HSF1, HSR, Heat shock, Protein homeostasis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5 °C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype.
- MeSH
- cirkadiánní hodiny MeSH
- cirkadiánní rytmus * MeSH
- fibroblasty fyziologie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- potkani inbrední SHR fyziologie MeSH
- potkani Wistar MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH