Nejvíce citovaný článek - PubMed ID 10607609
Nonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread. Their evolutionary conservation suggests that many of them are not pseudogenes, since they maintain dN/dS values (ratios of substitution rates at non-synonymous and synonymous sites) significantly lower than 1 (this is a signature of purifying selection in protein-coding regions). We also found that double substitutions in codons-where an intermediate step is a nonsense substitution-show a higher rate of evolution compared to null models, indicating that a stop codon was introduced and then changed back to sense via positive selection. This further supports the notion that nonsense substitutions in bacteria are relatively common and do not necessarily cause pseudogenization. In-frame stop codons may be an important mechanism of regulation: Such codons are likely to cause a substantial decrease of protein expression levels.
- Klíčová slova
- expression, in-fame stop codon, negative selection, population polymorphism, short-term evolution,
- MeSH
- Bacteria klasifikace genetika MeSH
- bakteriální proteiny klasifikace genetika MeSH
- bodová mutace MeSH
- fylogeneze MeSH
- modely genetické MeSH
- molekulární evoluce MeSH
- nesmyslný kodon * MeSH
- otevřené čtecí rámce genetika MeSH
- prokaryotické buňky metabolismus MeSH
- pseudogeny genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie nukleových kyselin MeSH
- selekce (genetika) MeSH
- terminační kodon genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- nesmyslný kodon * MeSH
- terminační kodon MeSH
Stable endosymbiosis of a bacterium into a host cell promotes cellular and genomic complexity. The mealybug Planococcus citri has two bacterial endosymbionts with an unusual nested arrangement: the γ-proteobacterium Moranella endobia lives in the cytoplasm of the β-proteobacterium Tremblaya princeps These two bacteria, along with genes horizontally transferred from other bacteria to the P. citri genome, encode gene sets that form an interdependent metabolic patchwork. Here, we test the stability of this three-way symbiosis by sequencing host and symbiont genomes for five diverse mealybug species and find marked fluidity over evolutionary time. Although Tremblaya is the result of a single infection in the ancestor of mealybugs, the γ-proteobacterial symbionts result from multiple replacements of inferred different ages from related but distinct bacterial lineages. Our data show that symbiont replacement can happen even in the most intricate symbiotic arrangements and that preexisting horizontally transferred genes can remain stable on genomes in the face of extensive symbiont turnover.
- Klíčová slova
- Sodalis, horizontal gene transfer, organelle, scale insect,
- MeSH
- Betaproteobacteria genetika růst a vývoj MeSH
- fylogeneze MeSH
- Gammaproteobacteria genetika růst a vývoj MeSH
- genom bakteriální MeSH
- Planococcus (hmyz) genetika mikrobiologie MeSH
- přenos genů horizontální genetika MeSH
- sekvenční analýza DNA MeSH
- symbióza genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH