Nejvíce citovaný článek - PubMed ID 10791026
BACKGROUND: The centromeric and pericentromeric regions of plant chromosomes are colonized by Ty3/gypsy retrotransposons, which, on the basis of their reverse transcriptase sequences, form the chromovirus CRM clade. Despite their potential importance for centromere evolution and function, they have remained poorly characterized. In this work, we aimed to carry out a comprehensive survey of CRM clade elements with an emphasis on their diversity, structure, chromosomal distribution and transcriptional activity. RESULTS: We have surveyed a set of 190 CRM elements belonging to 81 different retrotransposon families, derived from 33 host species and falling into 12 plant families. The sequences at the C-terminus of their integrases were unexpectedly heterogeneous, despite the understanding that they are responsible for targeting to the centromere. This variation allowed the division of the CRM clade into the three groups A, B and C, and the members of each differed considerably with respect to their chromosomal distribution. The differences in chromosomal distribution coincided with variation in the integrase C-terminus sequences possessing a putative targeting domain (PTD). A majority of the group A elements possess the CR motif and are concentrated in the centromeric region, while members of group C have the type II chromodomain and are dispersed throughout the genome. Although representatives of the group B lack a PTD of any type, they appeared to be localized preferentially in the centromeres of tested species. All tested elements were found to be transcriptionally active. CONCLUSIONS: Comprehensive analysis of the CRM clade elements showed that genuinely centromeric retrotransposons represent only a fraction of the CRM clade (group A). These centromeric retrotransposons represent an active component of centromeres of a wide range of angiosperm species, implying that they play an important role in plant centromere evolution. In addition, their transcriptional activity is consistent with the notion that the transcription of centromeric retrotransposons has a role in normal centromere function.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Transposable elements (TEs) are considered to be an important source of genome size variation and genetic and phenotypic plasticity in eukaryotes. Most of our knowledge about TEs comes from large genomic projects and studies focused on model organisms. However, TE dynamics among related taxa from natural populations and the role of TEs at the species or supra-species level, where genome size and karyotype evolution are modulated in concert with polyploidy and chromosomal rearrangements, remain poorly understood. We focused on the holokinetic genus Eleocharis (Cyperaceae), which displays large variation in genome size and the occurrence of polyploidy and agmatoploidy/symploidy. We analyzed and quantified the long terminal repeat (LTR) retrotransposons Ty1-copia and Ty3-gypsy in relation to changes in both genome size and karyotype in Eleocharis. We also examined how this relationship is reflected in the phylogeny of Eleocharis. RESULTS: Using flow cytometry, we measured the genome sizes of members of the genus Eleocharis (Cyperaceae). We found positive correlation between the independent phylogenetic contrasts of genome size and chromosome number in Eleocharis. We analyzed PCR-amplified sequences of various reverse transcriptases of the LTR retrotransposons Ty1-copia and Ty3-gypsy (762 sequences in total). Using real-time PCR and dot blot approaches, we quantified the densities of Ty1-copia and Ty3-gypsy within the genomes of the analyzed species. We detected an increasing density of Ty1-copia elements in evolutionarily younger Eleocharis species and found a positive correlation between Ty1-copia densities and C/n-values (an alternative measure of monoploid genome size) in the genus phylogeny. In addition, our analysis of Ty1-copia sequences identified a novel retrotransposon family named Helos1, which is responsible for the increasing density of Ty1-copia. The transition:transversion ratio of Helos1 sequences suggests that Helos1 recently transposed in later-diverging Eleocharis species. CONCLUSIONS: Using several different approaches, we were able to distinguish between the roles of LTR retrotransposons, polyploidy and agmatoploidy/symploidy in shaping Eleocharis genomes and karyotypes. Our results confirm the occurrence of both polyploidy and agmatoploidy/symploidy in Eleocharis. Additionally, we introduce a new player in the process of genome evolution in holokinetic plants: LTR retrotransposons.
- MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná chemie genetika MeSH
- druhová specificita MeSH
- Eleocharis klasifikace genetika MeSH
- fylogeneze MeSH
- genom rostlinný genetika MeSH
- koncové repetice genetika MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- polyploidie MeSH
- retroelementy genetika MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie aminokyselin MeSH
- sekvenční homologie nukleových kyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- retroelementy MeSH
Plant LTR retrotransposons of the envelope class define a new branch in the Metaviridae family. They differ from other LTR retrotransposons mainly by the presence of an additional ORF downstream of the gag-pol region which has been hypothesized to be equivalent to the envelope gene of retroviruses. Here we present a newly identified element from pea (Pisum sativum), named PIGY, that has all the features characteristic of this group of LTR retrotransposons. In addition to the potential coding sequence downstream of the gag-pol region, PIGY has a primer binding site complementary to tRNA(asp) and a polypurine tract with a TGGGG motif and is of large size (13,645 bp). The relationship between PIGY and other retrotransposons of the env-class was confirmed by a phylogenetic analysis of their reverse transcriptase domains. One distinctive feature of PIGY is that its env-like region is actually composed of two similar ORFs, each of which encodes a protein with similarity to the Athila envelope-like protein. PIGY is present in the pea genome in 1-5x10(3) copies and is transcriptionally active, suggesting that some of these elements may still be capable of active transposition. Another new env-class retrotransposon similar to PIGY was also identified among genomic sequences of Medicago truncatula.
- MeSH
- DNA primery MeSH
- fylogeneze * MeSH
- geny env genetika MeSH
- hrách setý genetika virologie MeSH
- hybridizace in situ fluorescenční MeSH
- koncové repetice genetika MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- párování bází MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- retroelementy genetika MeSH
- RNA-viry genetika MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA primery MeSH
- retroelementy MeSH
We have isolated and characterized a novel giant retroelement, named Ogre, which is over 22 kb long and makes up at least 5% of the pea (Pisum sativum L.) genome. This element can be classified as a Ty3/gypsy-like LTR retrotransposon based on the presence of long terminal repeats (LTRs) and the order of the domains coding for typical retrotransposon proteins. In addition to its extreme length, it has several features which make it unique among the retroelements described so far: (1) the sequences coding for gag and prot proteins are separated from the rt/rh-int domains by several stop codons; (2) the region containing these stop codons is removed from the element transcripts by splicing which results in reconstitution of the complete gag-pol coding sequence; (3) only a part of the transcripts is spliced which probably determines the ratio of translated proteins; (4) the element contains an extra ORF located upstream the gag-pol coding sequences, potentially coding for a protein of 546-562 amino acids with unknown function. The transcriptional activity of the Ogre elements has been detected in all organs tested (leaves, roots, flowers) as well as in wounded leaves and protoplasts. Considering this retroelement's constitutive expression and observed high mutual similarity of the element genomic sequences, it is possible to speculate about its recent amplification in the genomes of pea and other legume plants.
- MeSH
- alternativní sestřih * MeSH
- DNA rostlinná chemie genetika MeSH
- Fabaceae genetika MeSH
- genetická transkripce * MeSH
- genom rostlinný MeSH
- hrách setý genetika MeSH
- molekulární sekvence - údaje MeSH
- otevřené čtecí rámce genetika MeSH
- regulace genové exprese u rostlin MeSH
- retroelementy genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie nukleových kyselin MeSH
- sekvenční seřazení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- retroelementy MeSH