Nejvíce citovaný článek - PubMed ID 12520028
BACKGROUND: The centromeric and pericentromeric regions of plant chromosomes are colonized by Ty3/gypsy retrotransposons, which, on the basis of their reverse transcriptase sequences, form the chromovirus CRM clade. Despite their potential importance for centromere evolution and function, they have remained poorly characterized. In this work, we aimed to carry out a comprehensive survey of CRM clade elements with an emphasis on their diversity, structure, chromosomal distribution and transcriptional activity. RESULTS: We have surveyed a set of 190 CRM elements belonging to 81 different retrotransposon families, derived from 33 host species and falling into 12 plant families. The sequences at the C-terminus of their integrases were unexpectedly heterogeneous, despite the understanding that they are responsible for targeting to the centromere. This variation allowed the division of the CRM clade into the three groups A, B and C, and the members of each differed considerably with respect to their chromosomal distribution. The differences in chromosomal distribution coincided with variation in the integrase C-terminus sequences possessing a putative targeting domain (PTD). A majority of the group A elements possess the CR motif and are concentrated in the centromeric region, while members of group C have the type II chromodomain and are dispersed throughout the genome. Although representatives of the group B lack a PTD of any type, they appeared to be localized preferentially in the centromeres of tested species. All tested elements were found to be transcriptionally active. CONCLUSIONS: Comprehensive analysis of the CRM clade elements showed that genuinely centromeric retrotransposons represent only a fraction of the CRM clade (group A). These centromeric retrotransposons represent an active component of centromeres of a wide range of angiosperm species, implying that they play an important role in plant centromere evolution. In addition, their transcriptional activity is consistent with the notion that the transcription of centromeric retrotransposons has a role in normal centromere function.
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: The genus Fritillaria (Liliaceae) comprises species with extremely large genomes (1C = 30 000-127 000 Mb) and a bicontinental distribution. Most North American species (subgenus Liliorhiza) differ from Eurasian Fritillaria species by their distinct phylogenetic position and increased amounts of heterochromatin. This study examined the contribution of major repetitive elements to the genome obesity found in Fritillaria and identified repeats contributing to the heterochromatin arrays in Liliorhiza species. METHODS: Two Fritillaria species of similar genome size were selected for detailed analysis, one from each phylogeographical clade: F. affinis (1C = 45·6 pg, North America) and F. imperialis (1C = 43·0 pg, Eurasia). Fosmid libraries were constructed from their genomic DNAs and used for identification, sequence characterization, quantification and chromosome localization of clones containing highly repeated sequences. KEY RESULTS AND CONCLUSIONS: Repeats corresponding to 6·7 and 4·7 % of the F. affinis and F. imperialis genome, respectively, were identified. Chromoviruses and the Tat lineage of Ty3/gypsy group long terminal repeat retrotransposons were identified as the predominant components of the highly repeated fractions in the F. affinis and F. imperialis genomes, respectively. In addition, a heterogeneous, extremely AT-rich satellite repeat was isolated from F. affinis. The FriSAT1 repeat localized in heterochromatic bands makes up approx. 26 % of the F. affinis genome and substantial genomic fractions in several other Liliorhiza species. However, no evidence of a relationship between heterochromatin content and genome size variation was observed. Also, this study was unable to reveal any predominant repeats which tracked the increasing/decreasing trends of genome size evolution in Fritillaria. Instead, the giant Fritillaria genomes seem to be composed of many diversified families of transposable elements. We hypothesize that the genome obesity may be partly determined by the failure of removal mechanisms to counterbalance effectively the retrotransposon amplification.
- MeSH
- Fritillaria genetika MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- genom rostlinný MeSH
- heterochromatin genetika MeSH
- koncové repetice MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- oblasti bohaté na AT * MeSH
- repetitivní sekvence nukleových kyselin MeSH
- retroelementy genetika MeSH
- satelitní DNA genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin MeSH
- retroelementy MeSH
- satelitní DNA MeSH
BACKGROUND: Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement. RESULTS: In this work, we report on the first thorough characterization of the repeat component of the banana (M. acuminata cv. 'Calcutta 4') genome. Analysis of almost 100 Mb of sequence data (0.15× genome coverage) permitted partial sequence reconstruction and characterization of repetitive DNA, making up about 30% of the genome. The results showed that the banana repeats are predominantly made of various types of Ty1/copia and Ty3/gypsy retroelements representing 16 and 7% of the genome respectively. On the other hand, DNA transposons were found to be rare. In addition to new families of transposable elements, two new satellite repeats were discovered and found useful as cytogenetic markers. To help in banana sequence annotation, a specific Musa repeat database was created, and its utility was demonstrated by analyzing the repeat composition of 62 genomic BAC clones. CONCLUSION: A low-depth 454 sequencing of banana nuclear genome provided the largest amount of DNA sequence data available until now for Musa and permitted reconstruction of most of the major types of DNA repeats. The information obtained in this study improves the knowledge of the long-range organization of banana chromosomes, and provides sequence resources needed for repeat masking and annotation during the Musa genome sequencing project. It also provides sequence data for isolation of DNA markers to be used in genetic diversity studies and in marker-assisted selection.
- MeSH
- banánovník genetika MeSH
- DNA rostlinná genetika MeSH
- genom rostlinný * MeSH
- mikrosatelitní repetice * MeSH
- retroelementy * MeSH
- sekvenční analýza DNA MeSH
- transpozibilní elementy DNA * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- retroelementy * MeSH
- transpozibilní elementy DNA * MeSH
We carried out a global survey of all major types of transposable elements in Silene latifolia, a model species with sex chromosomes that are in the early stages of their evolution. A shotgun genomic library was screened with genomic DNA to isolate and characterize the most abundant elements. We found that the most common types of elements were the subtelomeric tandem repeat X-43.1 and Gypsy retrotransposons, followed by Copia retrotransposons and LINE non-LTR elements. SINE elements and DNA transposons were less abundant. We also amplified transposable elements with degenerate primers and used them to screen the library. The localization of elements by FISH revealed that most of the Copia elements were accumulated on the Y chromosome. Surprisingly, one type of Gypsy element, which was similar to Ogre elements known from legumes, was almost absent on the Y chromosome but otherwise uniformly distributed on all chromosomes. Other types of elements were ubiquitous on all chromosomes. Moreover, we isolated and characterized two new tandem repeats. One of them, STAR-C, was localized at the centromeres of all chromosomes except the Y chromosome, where it was present on the p-arm. Its variant, STAR-Y, carrying a small deletion, was specifically localized on the q-arm of the Y chromosome. The second tandem repeat, TR1, co-localized with the 45S rDNA cluster in the subtelomeres of five pairs of autosomes. FISH analysis of other Silene species revealed that some elements (e.g., Ogre-like elements) are confined to the section Elisanthe while others (e.g. Copia or Athila-like elements) are present also in more distant species. Similarly, the centromeric satellite STAR-C was conserved in the genus Silene whereas the subtelomeric satellite X-43.1 was specific for Elisanthe section. Altogether, our data provide an overview of the repetitive sequences in Silene latifolia and revealed that genomic distribution and evolutionary dynamics differ among various repetitive elements. The unique pattern of repeat distribution is found on the Y chromosome, where some elements are accumulated while other elements are conspicuously absent, which probably reflects different forces shaping the Y chromosome.
- MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná genetika MeSH
- druhová specificita MeSH
- hybridizace in situ fluorescenční MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- Silene klasifikace genetika MeSH
- tandemové repetitivní sekvence genetika MeSH
- transpozibilní elementy DNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- transpozibilní elementy DNA MeSH
BACKGROUND: Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum). RESULTS: Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. CONCLUSION: We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35-48% of the genome. These data provide a starting point for further investigations of legume plant genomes based on their global comparative analysis and for the development of more sophisticated approaches for data mining.
- MeSH
- chromozomy rostlin MeSH
- DNA rostlinná * klasifikace MeSH
- genom rostlinný * MeSH
- genová dávka MeSH
- Glycine max genetika MeSH
- hrách setý genetika MeSH
- hybridizace in situ fluorescenční MeSH
- kontigové mapování MeSH
- Medicago truncatula genetika MeSH
- metafáze MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- retroelementy genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie nukleových kyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA rostlinná * MeSH
- retroelementy MeSH
In this paper we describe a pair of novel Ty3/gypsy retrotransposons isolated from the dioecious plant Silene latifolia, consisting of a non-autonomous element Retand-1 (3.7 kb) and its autonomous partner Retand-2 (11.1 kb). These two elements have highly similar long terminal repeat (LTR) sequences but differ in the presence of the typical retroelement coding regions (gag-pol genes), most of which are missing in Retand-1. Moreover, Retand-2 contains two additional open reading frames in antisense orientation localized between the pol gene and right LTR. Retand transcripts were detected in all organs tested (leaves, flower buds and roots) which, together with the high sequence similarity of LTRs in individual elements, indicates their recent transpositional activity. The autonomous elements are similarly abundant (2,700 copies) as non-autonomous ones (2,100 copies) in S. latifolia genome. Retand elements are also present in other Silene species, mostly in subtelomeric heterochromatin regions of all chromosomes. The only exception is the subtelomere of the short arm of the Y chromosome in S. latifolia which is known to lack the terminal heterochromatin. An interesting feature of the Retand elements is the presence of a tandem repeat sequence, which is more amplified in the non-autonomous Retand-1.
- MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná metabolismus MeSH
- genetická transkripce MeSH
- genom rostlinný genetika MeSH
- koncové repetice genetika MeSH
- molekulární sekvence - údaje MeSH
- rekombinantní proteiny genetika MeSH
- retroelementy genetika MeSH
- sekvence nukleotidů MeSH
- Silene genetika MeSH
- Southernův blotting MeSH
- tandemové repetitivní sekvence genetika MeSH
- telomery genetika MeSH
- transkripční faktory genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- mdg4 protein (gypsy) MeSH Prohlížeč
- rekombinantní proteiny MeSH
- retroelementy MeSH
- transkripční faktory MeSH
Amplification and eventual elimination of dispersed repeats, especially those of the retroelement origin, account for most of the profound size variability observed among plant genomes. In most higher plants investigated so far, differential accumulation of various families of elements contributes to these differences. Here we report the identification of giant Ty3/gypsy-like retrotransposons from the legume plant Vicia pannonica, which alone make up approximately 38% of the genome of this species. These retrotransposons have structural features of the Ogre elements previously identified in the genomes of pea and Medicago. These features include extreme size (25 kb), the presence of an extra ORF upstream of the gag-pol region, and a putative intron dividing the prot and rt coding sequences. The Ogre elements are evenly dispersed on V. pannonica chromosomes except for terminal regions containing satellite repeats, their individual copies show extraordinary sequence similarity, and at least part of them are transcriptionally active, which suggests their recent amplification. Similar elements were also detected in several other Vicia species but in most cases in significantly lower numbers. However, there was no obvious correlation of the abundance of Ogre sequences with the genome size of these species.
- MeSH
- amplifikace genu MeSH
- DNA rostlinná genetika MeSH
- druhová specificita MeSH
- Fabaceae genetika MeSH
- genom rostlinný * MeSH
- genová dávka MeSH
- hybridizace in situ fluorescenční MeSH
- introny MeSH
- konzervovaná sekvence MeSH
- molekulární sekvence - údaje MeSH
- otevřené čtecí rámce MeSH
- retroelementy genetika MeSH
- rostlinné proteiny genetika MeSH
- sekvence nukleotidů MeSH
- vikev genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA rostlinná MeSH
- retroelementy MeSH
- rostlinné proteiny MeSH
The five highly related envelope subgroups of the avian sarcoma and leukosis viruses (ASLVs), subgroup A [ASLV(A)] to ASLV(E), are thought to have evolved from an ancestral envelope glycoprotein yet utilize different cellular proteins as receptors. Alleles encoding the subgroup A ASLV receptors (Tva), members of the low-density lipoprotein receptor family, and the subgroup B, D, and E ASLV receptors (Tvb), members of the tumor necrosis factor receptor family, have been identified and cloned. However, alleles encoding the subgroup C ASLV receptors (Tvc) have not been cloned. Previously, we established a genetic linkage between tvc and several other nearby genetic markers on chicken chromosome 28, including tva. In this study, we used this information to clone the tvc gene and identify the Tvc receptor. A bacterial artificial chromosome containing a portion of chicken chromosome 28 that conferred susceptibility to ASLV(C) infection was identified. The tvc gene was identified on this genomic DNA fragment and encodes a 488-amino-acid protein most closely related to mammalian butyrophilins, members of the immunoglobulin protein family. We subsequently cloned cDNAs encoding Tvc that confer susceptibility to infection by subgroup C viruses in chicken cells resistant to ASLV(C) infection and in mammalian cells that do not normally express functional ASLV receptors. In addition, normally susceptible chicken DT40 cells were resistant to ASLV(C) infection after both tvc alleles were disrupted by homologous recombination. Tvc binds the ASLV(C) envelope glycoproteins with low-nanomolar affinity, an affinity similar to that of binding of Tva and Tvb with their respective envelope glycoproteins. We have also identified a mutation in the tvc gene in line L15 chickens that explains why this line is resistant to ASLV(C) infection.
- MeSH
- butyrofiliny MeSH
- klonování DNA MeSH
- kultivované buňky MeSH
- kur domácí MeSH
- membránové glykoproteiny fyziologie MeSH
- molekulární sekvence - údaje MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- terminační kodon MeSH
- virové receptory chemie genetika fyziologie MeSH
- virus ptačí leukózy fyziologie MeSH
- viry ptačího sarkomu fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- butyrofiliny MeSH
- membránové glykoproteiny MeSH
- terminační kodon MeSH
- virové receptory MeSH
Plant LTR retrotransposons of the envelope class define a new branch in the Metaviridae family. They differ from other LTR retrotransposons mainly by the presence of an additional ORF downstream of the gag-pol region which has been hypothesized to be equivalent to the envelope gene of retroviruses. Here we present a newly identified element from pea (Pisum sativum), named PIGY, that has all the features characteristic of this group of LTR retrotransposons. In addition to the potential coding sequence downstream of the gag-pol region, PIGY has a primer binding site complementary to tRNA(asp) and a polypurine tract with a TGGGG motif and is of large size (13,645 bp). The relationship between PIGY and other retrotransposons of the env-class was confirmed by a phylogenetic analysis of their reverse transcriptase domains. One distinctive feature of PIGY is that its env-like region is actually composed of two similar ORFs, each of which encodes a protein with similarity to the Athila envelope-like protein. PIGY is present in the pea genome in 1-5x10(3) copies and is transcriptionally active, suggesting that some of these elements may still be capable of active transposition. Another new env-class retrotransposon similar to PIGY was also identified among genomic sequences of Medicago truncatula.
- MeSH
- DNA primery MeSH
- fylogeneze * MeSH
- geny env genetika MeSH
- hrách setý genetika virologie MeSH
- hybridizace in situ fluorescenční MeSH
- koncové repetice genetika MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- párování bází MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- retroelementy genetika MeSH
- RNA-viry genetika MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA primery MeSH
- retroelementy MeSH
We have isolated and characterized a novel giant retroelement, named Ogre, which is over 22 kb long and makes up at least 5% of the pea (Pisum sativum L.) genome. This element can be classified as a Ty3/gypsy-like LTR retrotransposon based on the presence of long terminal repeats (LTRs) and the order of the domains coding for typical retrotransposon proteins. In addition to its extreme length, it has several features which make it unique among the retroelements described so far: (1) the sequences coding for gag and prot proteins are separated from the rt/rh-int domains by several stop codons; (2) the region containing these stop codons is removed from the element transcripts by splicing which results in reconstitution of the complete gag-pol coding sequence; (3) only a part of the transcripts is spliced which probably determines the ratio of translated proteins; (4) the element contains an extra ORF located upstream the gag-pol coding sequences, potentially coding for a protein of 546-562 amino acids with unknown function. The transcriptional activity of the Ogre elements has been detected in all organs tested (leaves, roots, flowers) as well as in wounded leaves and protoplasts. Considering this retroelement's constitutive expression and observed high mutual similarity of the element genomic sequences, it is possible to speculate about its recent amplification in the genomes of pea and other legume plants.
- MeSH
- alternativní sestřih * MeSH
- DNA rostlinná chemie genetika MeSH
- Fabaceae genetika MeSH
- genetická transkripce * MeSH
- genom rostlinný MeSH
- hrách setý genetika MeSH
- molekulární sekvence - údaje MeSH
- otevřené čtecí rámce genetika MeSH
- regulace genové exprese u rostlin MeSH
- retroelementy genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie nukleových kyselin MeSH
- sekvenční seřazení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- retroelementy MeSH