Nejvíce citovaný článek - PubMed ID 3162770
BACKGROUND: Plant LTR-retrotransposons are classified into two superfamilies, Ty1/copia and Ty3/gypsy. They are further divided into an enormous number of families which are, due to the high diversity of their nucleotide sequences, usually specific to a single or a group of closely related species. Previous attempts to group these families into broader categories reflecting their phylogenetic relationships were limited either to analyzing a narrow range of plant species or to analyzing a small numbers of elements. Furthermore, there is no reference database that allows for similarity based classification of LTR-retrotransposons. RESULTS: We have assembled a database of retrotransposon encoded polyprotein domains sequences extracted from 5410 Ty1/copia elements and 8453 Ty3/gypsy elements sampled from 80 species representing major groups of green plants (Viridiplantae). Phylogenetic analysis of the three most conserved polyprotein domains (RT, RH and INT) led to dividing Ty1/copia and Ty3/gypsy retrotransposons into 16 and 14 lineages respectively. We also characterized various features of LTR-retrotransposon sequences including additional polyprotein domains, extra open reading frames and primer binding sites, and found that the occurrence and/or type of these features correlates with phylogenies inferred from the three protein domains. CONCLUSIONS: We have established an improved classification system applicable to LTR-retrotransposons from a wide range of plant species. This system reflects phylogenetic relationships as well as distinct sequence and structural features of the elements. A comprehensive database of retrotransposon protein domains (REXdb) that reflects this classification provides a reference for efficient and unified annotation of LTR-retrotransposons in plant genomes. Access to REXdb related tools is implemented in the RepeatExplorer web server (https://repeatexplorer-elixir.cerit-sc.cz/) or using a standalone version of REXdb that can be downloaded seaparately from RepeatExplorer web page (http://repeatexplorer.org/).
- Klíčová slova
- LTR-retrotransposons, Polyprotein domains, Primer binding site, RepeatExplorer, Transposable elements,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: A prominent and distinctive feature of the rye (Secale cereale) chromosomes is the presence of massive blocks of subtelomeric heterochromatin, the size of which is correlated with the copy number of tandem arrays. The rapidity with which these regions have formed over the period of speciation remains unexplained. RESULTS: Using a BAC library created from the short arm telosome of rye chromosome 1R we uncovered numerous arrays of the pSc200 and pSc250 tandem repeat families which are concentrated in subtelomeric heterochromatin and identified the adjacent DNA sequences. The arrays show significant heterogeneity in monomer organization. 454 reads were used to gain a representation of the expansion of these tandem repeats across the whole rye genome. The presence of multiple, relatively short monomer arrays, coupled with the mainly star-like topology of the monomer phylogenetic trees, was taken as indicative of a rapid expansion of the pSc200 and pSc250 arrays. The evolution of subtelomeric heterochromatin appears to have included a significant contribution of illegitimate recombination. The composition of transposable elements (TEs) within the regions flanking the pSc200 and pSc250 arrays differed markedly from that in the genome a whole. Solo-LTRs were strongly enriched, suggestive of a history of active ectopic exchange. Several DNA motifs were over-represented within the LTR sequences. CONCLUSION: The large blocks of subtelomeric heterochromatin have arisen from the combined activity of TEs and the expansion of the tandem repeats. The expansion was likely based on a highly complex network of recombination mechanisms.
- Klíčová slova
- 1RS BAC library, 454 sequences, DNA motifs, Rye, Secale cereale, Subtelomeric heterochromatin, TE–tandem junctions, Tandem repeats, Transposable elements,
- MeSH
- amplifikace genu * MeSH
- chromozomy rostlin genetika MeSH
- fylogeneze MeSH
- genová knihovna MeSH
- heterochromatin genetika MeSH
- hybridizace in situ fluorescenční MeSH
- komponenty genomu MeSH
- sekvenční analýza DNA MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- tandemové repetitivní sekvence * MeSH
- transpozibilní elementy DNA * MeSH
- umělé bakteriální chromozomy MeSH
- žito genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin MeSH
- transpozibilní elementy DNA * MeSH
Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans.
- MeSH
- AMP cyklický metabolismus MeSH
- biologická evoluce * MeSH
- Cubozoa genetika metabolismus MeSH
- exprese genu MeSH
- fotoreceptory metabolismus MeSH
- fylogeneze MeSH
- genom * MeSH
- genomika metody MeSH
- mapování chromozomů MeSH
- messenger RNA genetika MeSH
- multigenová rodina MeSH
- opsiny genetika metabolismus MeSH
- proteiny vázající GTP metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AMP cyklický MeSH
- messenger RNA MeSH
- opsiny MeSH
- proteiny vázající GTP MeSH
Long terminal repeat (LTR) retrotransposons make up substantial parts of most higher plant genomes where they accumulate due to their replicative mode of transposition. Although the transposition is facilitated by proteins encoded within the gag-pol region which is common to all autonomous elements, some LTR retrotransposons were found to potentially carry an additional protein coding capacity represented by extra open reading frames located upstream or downstream of gag-pol. In this study, we performed a comprehensive in silico survey and comparative analysis of these extra open reading frames (ORFs) in the group of Ty3/gypsy LTR retrotransposons as the first step towards our understanding of their origin and function. We found that extra ORFs occur in all three major lineages of plant Ty3/gypsy elements, being the most frequent in the Tat lineage where most (77 %) of identified elements contained extra ORFs. This lineage was also characterized by the highest diversity of extra ORF arrangement (position and orientation) within the elements. On the other hand, all of these ORFs could be classified into only two broad groups based on their mutual similarities or the presence of short conserved motifs in their inferred protein sequences. In the Athila lineage, the extra ORFs were confined to the element 3' regions but they displayed much higher sequence diversity compared to those found in Tat. In the lineage of Chromoviruses the extra ORFs were relatively rare, occurring only in 5' regions of a group of elements present in a single plant family (Poaceae). In all three lineages, most extra ORFs lacked sequence similarities to characterized gene sequences or functional protein domains, except for two Athila-like elements with similarities to LOGL4 gene and part of the Chromoviruses extra ORFs that displayed partial similarity to histone H3 gene. Thus, in these cases the extra ORFs most likely originated by transduction or recombination of cellular gene sequences. In addition, the protein domain which is otherwise associated with DNA transposons have been detected in part of the Tat-like extra ORFs, pointing to their origin from an insertion event of a mobile element.
- MeSH
- DNA rostlinná * MeSH
- fylogeneze MeSH
- genetická vazba MeSH
- kapradiny klasifikace genetika MeSH
- koncové repetice * MeSH
- molekulární sekvence - údaje MeSH
- otevřené čtecí rámce * MeSH
- pořadí genů MeSH
- retroelementy * MeSH
- rostlinné viry genetika MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná * MeSH
- retroelementy * MeSH
The flavin-dependent enzyme FerB from Paracoccus denitrificans reduces a broad range of compounds, including ferric complexes, chromate and most notably quinones, at the expense of the reduced nicotinamide adenine dinucleotide cofactors NADH or NADPH. Recombinant unmodified and SeMet-substituted FerB were crystallized under similar conditions by the hanging-drop vapour-diffusion method with microseeding using PEG 4000 as the precipitant. FerB crystallized in several different crystal forms, some of which diffracted to approximately 1.8 A resolution. The crystals of native FerB belonged to space group P2(1), with unit-cell parameters a = 61.6, b = 110.1, c = 65.2 A, beta = 118.2 degrees and four protein molecules in the asymmetric unit, whilst the SeMet-substituted form crystallized in space group P2(1)2(1)2, with unit-cell parameters a = 61.2, b = 89.2, c = 71.5 A and two protein molecules in the asymmetric unit. Structure determination by the three-wavelength MAD/MRSAD method is now in progress.
A chromate-tolerant mutant chr1-663T bearing a stable one-gene mutation and its parental strain 6chr(+) were used to investigate the background of Cr(VI) tolerance in the fission yeast Schizosaccharomyces pombe. The mutant chr1-663T displayed a significantly decreased specific glutathione reductase (GR) activity coded by the pgr1 (+) gene compared with its parental strain. Transformants of the mutant chr1-663T with a nonintegrative pUR18N vector expressing the pgr1 (+) gene exhibited the same Cr(VI) sensitivity and specific GR activity as their parental strain, demonstrating the importance of the GR-NADPH system in Cr(VI) tolerance. Transformants, nevertheless, exhibited an increased intracellular peroxide concentration, a decreased Cr(VI)-reducing and HO*-producing ability, which suggested an unbalanced oxidoreduction state of cells and partial complementation of the GR function. No mutation was found in the sequences of the pgr1 (+) and the pap1 (+) (transcriptional regulatory gene of GR) genes of the Cr(VI)-tolerant mutant by sequence analysis.
- MeSH
- chromany metabolismus farmakologie MeSH
- down regulace * MeSH
- fungální léková rezistence MeSH
- glutathionreduktasa genetika metabolismus MeSH
- mutace * MeSH
- oxidace-redukce MeSH
- proteiny asociované s pankreatitidou MeSH
- Schizosaccharomyces pombe - proteiny genetika metabolismus MeSH
- Schizosaccharomyces účinky léků enzymologie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromany MeSH
- glutathionreduktasa MeSH
- proteiny asociované s pankreatitidou MeSH
- REG3A protein, human MeSH Prohlížeč
- Schizosaccharomyces pombe - proteiny MeSH
The W chromosome of the codling moth, Cydia pomonella, like that of most Lepidoptera species, is heterochromatic and forms a female-specific sex chromatin body in somatic cells. We collected chromatin samples by laser microdissection from euchromatin and W-chromatin bodies. DNA from the samples was amplified by degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) and used to prepare painting probes and start an analysis of the W-chromosome sequence composition. With fluorescence in situ hybridization (FISH), the euchromatin probe labelled all chromosomes, whereas the W-chromatin DNA proved to be a highly specific W-chromosome painting probe. For sequence analysis, DOP-PCR-generated DNA fragments were cloned, sequenced, and tested by Southern hybridization. We recovered single-copy and low-copy W-specific sequences, a sequence that was located only in the W and the Z chromosome, multi-copy sequences that were enriched in the W chromosome but occurred also elsewhere, and ubiquitous multi-copy sequences. Three of the multi-copy sequences were recognized as derived from hitherto unknown retrotransposons. The results show that our approach is feasible and that the W-chromosome composition of C. pomonella is not principally different from that of Bombyx mori or from that of Y chromosomes of several species with an XY sex-determining mechanism. The W chromosome has attracted repetitive sequences during evolution but also contains unique sequences.
- MeSH
- DNA primery MeSH
- druhová specificita MeSH
- hybridizace in situ fluorescenční MeSH
- malování chromozomů metody MeSH
- mikrodisekce MeSH
- molekulární sekvence - údaje MeSH
- molekulární sondy genetika metabolismus MeSH
- můry genetika MeSH
- oligonukleotidy MeSH
- pohlavní chromozomy genetika MeSH
- polymerázová řetězová reakce MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sexchromatin genetika metabolismus ultrastruktura MeSH
- Southernův blotting MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA primery MeSH
- molekulární sondy MeSH
- oligonukleotidy MeSH
In this paper we describe a pair of novel Ty3/gypsy retrotransposons isolated from the dioecious plant Silene latifolia, consisting of a non-autonomous element Retand-1 (3.7 kb) and its autonomous partner Retand-2 (11.1 kb). These two elements have highly similar long terminal repeat (LTR) sequences but differ in the presence of the typical retroelement coding regions (gag-pol genes), most of which are missing in Retand-1. Moreover, Retand-2 contains two additional open reading frames in antisense orientation localized between the pol gene and right LTR. Retand transcripts were detected in all organs tested (leaves, flower buds and roots) which, together with the high sequence similarity of LTRs in individual elements, indicates their recent transpositional activity. The autonomous elements are similarly abundant (2,700 copies) as non-autonomous ones (2,100 copies) in S. latifolia genome. Retand elements are also present in other Silene species, mostly in subtelomeric heterochromatin regions of all chromosomes. The only exception is the subtelomere of the short arm of the Y chromosome in S. latifolia which is known to lack the terminal heterochromatin. An interesting feature of the Retand elements is the presence of a tandem repeat sequence, which is more amplified in the non-autonomous Retand-1.
- MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná metabolismus MeSH
- genetická transkripce MeSH
- genom rostlinný genetika MeSH
- koncové repetice genetika MeSH
- molekulární sekvence - údaje MeSH
- rekombinantní proteiny genetika MeSH
- retroelementy genetika MeSH
- sekvence nukleotidů MeSH
- Silene genetika MeSH
- Southernův blotting MeSH
- tandemové repetitivní sekvence genetika MeSH
- telomery genetika MeSH
- transkripční faktory genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- mdg4 protein (gypsy) MeSH Prohlížeč
- rekombinantní proteiny MeSH
- retroelementy MeSH
- transkripční faktory MeSH
Amplification and eventual elimination of dispersed repeats, especially those of the retroelement origin, account for most of the profound size variability observed among plant genomes. In most higher plants investigated so far, differential accumulation of various families of elements contributes to these differences. Here we report the identification of giant Ty3/gypsy-like retrotransposons from the legume plant Vicia pannonica, which alone make up approximately 38% of the genome of this species. These retrotransposons have structural features of the Ogre elements previously identified in the genomes of pea and Medicago. These features include extreme size (25 kb), the presence of an extra ORF upstream of the gag-pol region, and a putative intron dividing the prot and rt coding sequences. The Ogre elements are evenly dispersed on V. pannonica chromosomes except for terminal regions containing satellite repeats, their individual copies show extraordinary sequence similarity, and at least part of them are transcriptionally active, which suggests their recent amplification. Similar elements were also detected in several other Vicia species but in most cases in significantly lower numbers. However, there was no obvious correlation of the abundance of Ogre sequences with the genome size of these species.
- MeSH
- amplifikace genu MeSH
- DNA rostlinná genetika MeSH
- druhová specificita MeSH
- Fabaceae genetika MeSH
- genom rostlinný * MeSH
- genová dávka MeSH
- hybridizace in situ fluorescenční MeSH
- introny MeSH
- konzervovaná sekvence MeSH
- molekulární sekvence - údaje MeSH
- otevřené čtecí rámce MeSH
- retroelementy genetika MeSH
- rostlinné proteiny genetika MeSH
- sekvence nukleotidů MeSH
- vikev genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA rostlinná MeSH
- retroelementy MeSH
- rostlinné proteiny MeSH
Plant LTR retrotransposons of the envelope class define a new branch in the Metaviridae family. They differ from other LTR retrotransposons mainly by the presence of an additional ORF downstream of the gag-pol region which has been hypothesized to be equivalent to the envelope gene of retroviruses. Here we present a newly identified element from pea (Pisum sativum), named PIGY, that has all the features characteristic of this group of LTR retrotransposons. In addition to the potential coding sequence downstream of the gag-pol region, PIGY has a primer binding site complementary to tRNA(asp) and a polypurine tract with a TGGGG motif and is of large size (13,645 bp). The relationship between PIGY and other retrotransposons of the env-class was confirmed by a phylogenetic analysis of their reverse transcriptase domains. One distinctive feature of PIGY is that its env-like region is actually composed of two similar ORFs, each of which encodes a protein with similarity to the Athila envelope-like protein. PIGY is present in the pea genome in 1-5x10(3) copies and is transcriptionally active, suggesting that some of these elements may still be capable of active transposition. Another new env-class retrotransposon similar to PIGY was also identified among genomic sequences of Medicago truncatula.
- MeSH
- DNA primery MeSH
- fylogeneze * MeSH
- geny env genetika MeSH
- hrách setý genetika virologie MeSH
- hybridizace in situ fluorescenční MeSH
- koncové repetice genetika MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- párování bází MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- retroelementy genetika MeSH
- RNA-viry genetika MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA primery MeSH
- retroelementy MeSH