Nejvíce citovaný článek - PubMed ID 11095419
Because the causes of combined pituitary hormone deficiency (CPHD) are complex, the etiology of congenital CPHD remains unknown in most cases. The aim of the study was to identify the genetic etiology of CPHD in a well-defined single-center cohort. In total, 34 children (12 girls) with congenital CPHD (growth hormone (GH) deficiency and impaired secretion of at least one other pituitary hormone) treated with GH in our center were enrolled in the study. Their median age was 11.2 years, pre-treatment height was -3.2 s.d., and maximal stimulated GH was 1.4 ug/L. Of them, 30 had central adrenal insufficiency, 27 had central hypothyroidism, ten had hypogonadotropic hypogonadism, and three had central diabetes insipidus. Twenty-six children had a midline defect on MRI. Children with clinical suspicion of a specific genetic disorder underwent genetic examination of the gene(s) of interest via Sanger sequencing or array comparative genomic hybridization. Children without a detected causal variant after the first-tier testing or with no suspicion of a specific genetic disorder were subsequently examined using next-generation sequencing growth panel. Variants were evaluated by the American College of Medical Genetics standards. Genetic etiology was confirmed in 7/34 (21%) children. Chromosomal aberrations were found in one child (14q microdeletion involving the OTX2 gene). The remaining 6 children had causative genetic variants in the GLI2, PROP1, POU1F1, TBX3, PMM2, and GNAO1 genes, respectively. We elucidated the cause of CPHD in a fifth of the patients. Moreover, our study supports the PMM2 gene as a candidate gene for CPHD and suggests pathogenic variants in the GNAO1 gene as a potential novel genetic cause of CPHD.
- Klíčová slova
- combined pituitary hormone deficiency, genetics of short stature, growth hormone deficiency, next-generation sequencing, short stature,
- Publikační typ
- časopisecké články MeSH
Familial short stature (FSS) describes vertically transmitted growth disorders. Traditionally, polygenic inheritance is presumed, but monogenic inheritance seems to occur more frequently than expected. Clinical predictors of monogenic FSS have not been elucidated. The aim of the study was to identify the monogenic etiology and its clinical predictors in FSS children. Of 747 patients treated with growth hormone (GH) in our center, 95 with FSS met the inclusion criteria (pretreatment height ≤-2 SD in child and his/her shorter parent); secondary short stature and Turner/Prader-Willi syndrome were excluded criteria. Genetic etiology was known in 11/95 children before the study, remaining 84 were examined by next-generation sequencing. The results were evaluated by American College of Medical Genetics and Genomics (ACMG) guidelines. Nonparametric tests evaluated differences between monogenic and non-monogenic FSS, an ROC curve estimated quantitative cutoffs for the predictors. Monogenic FSS was confirmed in 36/95 (38%) children. Of these, 29 (81%) carried a causative genetic variant affecting the growth plate, 4 (11%) a variant affecting GH-insulin-like growth factor 1 (IGF1) axis and 3 (8%) a variant in miscellaneous genes. Lower shorter parent's height (P = 0.015) and less delayed bone age (BA) before GH treatment (P = 0.026) predicted monogenic FSS. In children with BA delayed less than 0.4 years and with shorter parent's heights ≤-2.4 SD, monogenic FSS was revealed in 13/16 (81%) cases. To conclude, in FSS children treated with GH, a monogenic etiology is frequent, and gene variants affecting the growth plate are the most common. Shorter parent's height and BA are clinical predictors of monogenic FSS.
- Klíčová slova
- GH treatment, familial short stature, growth plate disorders, next-generation sequencing, predictors of monogenic short stature,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The growth hormone deficiency (GHD) diagnosis is controversial especially due to low specificity of growth hormone (GH) stimulation tests. It is therefore believed that children diagnosed with GHD form a heterogeneous group with growth disorder frequently independent on GH function. No study evaluating the complex etiology of growth failure in children with diagnosed GHD has been performed thus far. AIMS: To discover genetic etiology of short stature in children with diagnosed GHD from families with short stature. METHODS: Fifty-two children diagnosed with primary GHD and vertically transmitted short stature (height SDS in the child and his/her shorter parent <-2 SD) were included to our study. The GHD diagnosis was based on growth data suggestive of GHD, absence of substantial disproportionality (sitting height to total height ratio <-2 SD or >+2 SD), IGF-1 levels <0 for age and sex specific SD and peak GH concentration <10 ug/L in two stimulation tests. All children were examined using next-generation sequencing methods, and the genetic variants were subsequently evaluated by American College of Medical Genetics standards and guidelines. RESULTS: The age of children at enrollment into the study was 11 years (median, IQR 9-14 years), their height prior to GH treatment was -3.0 SD (-3.6 to -2.8 SD), IGF-1 concentration -1.4 SD (-2.0 to -1.1 SD), and maximal stimulated GH 6.3 ug/L (4.8-7.6 ug/L). No child had multiple pituitary hormone deficiency or a midbrain region pathology. Causative variant in a gene that affects growth was discovered in 15/52 (29%) children. Of them, only 2 (13%) had a genetic variant affecting GH secretion or function (GHSR and OTX2). Interestingly, in 10 (67%) children we discovered a primary growth plate disorder (ACAN, COL1A2, COL11A1, COL2A1, EXT2, FGFR3, NF1, NPR2, PTPN11 [2x]), in one (7%) a genetic variant impairing IGF-1 action (IGFALS) and in two (12%) a variant in miscellaneous genes (SALL4, MBTPS2). CONCLUSIONS: In children with vertically transmitted short stature, genetic results frequently did not correspond with the clinical diagnosis of GH deficiency. These results underline the doubtful reliability of methods standardly used to diagnose GH deficiency.
- Klíčová slova
- genetics, growth hormone, growth hormone deficiency, next-generation sequencing, short stature,
- MeSH
- dítě MeSH
- hypofyzární nanismus * diagnóza genetika farmakoterapie MeSH
- insulinu podobný růstový faktor I genetika MeSH
- lidé MeSH
- lidský růstový hormon * MeSH
- mladiství MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- insulinu podobný růstový faktor I MeSH
- lidský růstový hormon * MeSH
BACKGROUND: Hypopituitarism as a result of PROP1 (prophet of PIT1) mutation represents the most common genetic cause of combined deficiency of pituitary hormones and due to growth retardation it is typically diagnosed in childhood. CASE DESCRIPTION: We present a unique case report of a prepubertal woman with growth retardation in whom combined pituitary hormone deficiency [central hypopituitarism, hypogonadism, and growth hormone (GH) deficiency] caused by homozygous mutation c.150delA in the PROP1 gene was diagnosed late in young adulthood due to unfavorable life circumstances. Through cautiously combined GH therapy and sex hormone therapy, she has achieved better than expected height (exceeding predictions based on family height) and sexual maturation, including regular menstrual cycles. CONCLUSION: Early diagnosis of panhypopituitarism due to PROP1 mutation is essential for successful treatment; however, our case report shows that carefully titrated GH treatment and sex hormone substitution, although initiated in adulthood, enable restoration of physiological growth and sexual development in a hormonally infantile adult woman with a PROP1 mutation.
- Klíčová slova
- PROP1 mutation, growth, growth hormone therapy, hormonal substitution therapy, sexual maturation,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
OBJECTIVE: To describe real-life dosing patterns in children with growth hormone deficiency (GHD), born small for gestational age (SGA) or with Turner syndrome (TS) receiving growth hormone (GH) and enrolled in the NordiNet International Outcome Study (IOS; Nbib960128) between 2006 and 2016. DESIGN: This non-interventional, multicentre study included paediatric patients diagnosed with GHD (isolated (IGHD) or multiple pituitary hormone deficiency (MPHD)), born SGA or with TS and treated according to everyday clinical practice from the Czech Republic (IGHD/MPHD/SGA/TS: n = 425/61/316/119), France (n = 1404/188/970/206), Germany (n = 2603/351/1387/411) and the UK (n = 259/60/87/35). METHODS: GH dosing was compared descriptively across countries and indications. Proportions of patients by GH dose group (low/medium/high) or GH dose change (decrease/increase/no change) during years 1 and 2 were also evaluated across countries and indications. RESULTS: In the Czech Republic, GH dosing was generally within recommended levels. In France, average GH doses were higher for patients with IGHD, MPHD and SGA than in other countries. GH doses in TS tended to be at the lower end of the recommended label range, especially in Germany and the UK; the majority of patients were in the low-dose group. A significant inverse association between baseline height standard deviation score and GH dose was shown (P < 0.05); shorter patients received higher doses. Changes in GH dose, particularly increases, were more common in the second (40%) than in the first year (25%). CONCLUSIONS: GH dosing varies considerably across countries and indications. In particular, almost half of girls with TS received GH doses below practice guidelines and label recommendations.
- MeSH
- dítě MeSH
- hypofyzární nanismus diagnóza farmakoterapie epidemiologie MeSH
- hypotrofický novorozenec * MeSH
- internacionalita * MeSH
- lidé MeSH
- lidský růstový hormon aplikace a dávkování MeSH
- mladiství MeSH
- následné studie MeSH
- poruchy růstu diagnóza farmakoterapie epidemiologie MeSH
- předškolní dítě MeSH
- prospektivní studie MeSH
- průřezové studie MeSH
- Turnerův syndrom diagnóza farmakoterapie epidemiologie MeSH
- výsledek terapie MeSH
- výzkumná zpráva * MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Francie epidemiologie MeSH
- Německo epidemiologie MeSH
- Spojené království epidemiologie MeSH
- Názvy látek
- lidský růstový hormon MeSH