Most cited article - PubMed ID 11522050
Excitability changes of cortical neurons during the postnatal period in rats exposed to prenatal hypobaric hypoxia
Attention-deficit/hyperactivity disorder (ADHD) is a mental disorder with a heterogeneous origin with a global incidence that continues to grow. Its causes and pathophysiological mechanisms are not fully understood. It includes a combination of persistent symptoms such as difficulty in concentration, hyperactivity and impulsive behavior. Maternal methamphetamine (MA) abuse is a serious problem worldwide, it can lead to behavioral changes in their offspring that have similarities with behavioral changes seen in children with ADHD. There are several types of ADHD animal models, e.g. genetic models, pharmacologically, chemically and exogenously induced models. One of the exogenously induced ADHD models is the hypoxia-induced model. Our studies, as well as those of others, have demonstrated that maternal MA exposure can lead to abnormalities in the placenta and umbilical cord that result in prenatal hypoxia as well as fetal malnutrition that can result in irreversible changes to experimental animals. Therefore, the aim the present study was to compare the cognitive impairments in MA exposure model with those in established model of ADHD - prenatal hypoxia model, to test whether MA exposure is a valid model of ADHD. Pregnant Wistar rats were divided into four groups based on their gestational exposure to MA: (1) daily subcutaneous injections of MA (5 mg/kg), (2) saline injections at the same time and volume, (3) daily 1-hr hypoxia (10 % O2), and (4) no gestational exposure (controls). Male rat offspring were tested for short-term memory in the Novel Object Recognition Test and the Object Location Test between postnatal days 35 and 40. Also their locomotor activity in both tests was measured. Based on the present results, it seems that prenatal MA exposure is not the best animal model for ADHD since it shows corresponding symptoms only in certain measures. Given our previous results supporting our hypothesis, more experiments are needed to further test possible use of prenatal MA exposure as an animal model of the ADHD.
- MeSH
- Behavior, Animal * MeSH
- Gestational Age MeSH
- Attention Deficit Disorder with Hyperactivity chemically induced physiopathology psychology MeSH
- Fetal Hypoxia complications MeSH
- Cognition MeSH
- Rats MeSH
- Locomotion MeSH
- Maternal Exposure MeSH
- Methamphetamine * MeSH
- Disease Models, Animal MeSH
- Rats, Wistar MeSH
- Pregnancy MeSH
- Prenatal Exposure Delayed Effects * MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- Methamphetamine * MeSH
Perinatal hypoxia is still one of the greatest threats to the newborn child, even in developed countries. However, there is a lack of works which summarize up-to-date information about that huge topic. Our review covers a broader spectrum of recent results from studies on mechanisms leading to hypoxia-induced injury. It also resumes possible primary causes and observed behavioral outcomes of perinatal hypoxia. In this review, we recognize two types of hypoxia, according to the localization of its primary cause: environmental and placental. Later we analyze possible pathways of prenatal hypoxia-induced injury including gene expression changes, glutaminergic excitatory damage (and a role of NMDA receptors in it), oxidative stress with ROS and RNS production, inflammation and apoptosis. Moreover, we focus on the impact of these pathophysiological changes on the structure and development of the brain, especially on its regions: corpus striatum and hippocampus. These brain changes of the offspring lead to impairments in their postnatal growth and sensorimotor development, and in their motor functions, activity, emotionality and learning ability in adulthood. Later we compare various animal models used to investigate the impact of prenatal and postnatal injury (hypoxic, ischemic or combinatory) on living organisms, and show their advantages and limitations.
- MeSH
- Humans MeSH
- Inflammation Mediators metabolism MeSH
- Brain growth & development metabolism MeSH
- Hypoxia, Brain metabolism pathology MeSH
- Animals, Newborn MeSH
- Infant, Newborn MeSH
- Oxidative Stress physiology MeSH
- Receptors, N-Methyl-D-Aspartate metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Infant, Newborn MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Inflammation Mediators MeSH
- Receptors, N-Methyl-D-Aspartate MeSH