Nejvíce citovaný článek - PubMed ID 11792172
In this study, gold nanoparticles produced by eukaryotic cell waste (AuNP), were analyzed as a transfection tool. AuNP were produced by Fusarium oxysporum and analyzed by spectrophotometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) were used before and after conjugation with different nucleic acid (NA) types. Graphite furnace atomic absorption spectroscopy (GF-AAS) was used to determine the AuNP concentration. Conjugation was detected by electrophoresis. Confocal microscopy and quantitative real-time PCR (qPCR) were used to assess transfection. TEM, SEM, and EDS showed 25 nm AuNP with round shape. The amount of AuNP was 3.75 ± 0.2 µg/µL and FTIR proved conjugation of all NA types to AuNP. All the samples had a negative charge of - 36 to - 46 mV. Confocal microscopy confirmed internalization of the ssRNA-AuNP into eukaryotic cells and qPCR confirmed release and activity of carried RNA.
- MeSH
- chemické jevy MeSH
- kovové nanočástice * MeSH
- nukleové kyseliny * MeSH
- RNA MeSH
- zlato MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nukleové kyseliny * MeSH
- RNA MeSH
- zlato MeSH
PURPOSE: Plasmonic photothermal cancer therapy by gold nanorods (GNRs) emerges as a promising tool for cancer treatment. The goal of this study was to design cationic oligoethylene glycol (OEG) compounds varying in hydrophobicity and molecular electrostatic potential as ligand shells of GNRs. Three series of ligands with different length of OEG chain (ethylene glycol units = 3, 4, 5) and variants of quaternary ammonium salts (QAS) as terminal functional group were synthesized and compared to a prototypical quaternary ammonium ligand with alkyl chain - (16-mercaptohexadecyl)trimethylammonium bromide (MTAB). METHODS: Step-by-step research approach starting with the preparation of compounds characterized by NMR and HRMS spectra, GNRs ligand exchange evaluation through characterization of cytotoxicity and GNRs cellular uptake was used. A method quantifying the reshaping of GNRs was applied to determine the effect of ligand structure on the heat transport from GNRs under fs-laser irradiation. RESULTS: Fourteen out of 18 synthesized OEG compounds successfully stabilized GNRs in the water. The colloidal stability of prepared GNRs in the cell culture medium decreased with the number of OEG units. In contrast, the cellular uptake of OEG+GNRs by HeLa cells increased with the length of OEG chain while the structure of the QAS group showed a minor role. Compared to MTAB, more hydrophilic OEG compounds exhibited nearly two order of magnitude lower cytotoxicity in free state and provided efficient cellular uptake of GNRs close to the level of MTAB. Regarding photothermal properties, OEG compounds evoked the photothermal reshaping of GNRs at lower peak fluence (14.8 mJ/cm2) of femtosecond laser irradiation than the alkanethiol MTAB. CONCLUSION: OEG+GNRs appear to be optimal for clinical applications with systemic administration of NPs not-requiring irradiation at high laser intensity such as drug delivery and photothermal therapy inducing apoptosis.
- Klíčová slova
- cellular uptake, gold nanorods, oligoethylene glycol, photothermal stability, quaternary ammonium salts,
- MeSH
- biologický transport MeSH
- HeLa buňky MeSH
- hydrofobní a hydrofilní interakce MeSH
- koloidy MeSH
- kvartérní amoniové sloučeniny chemie MeSH
- lidé MeSH
- ligandy MeSH
- nanotrubičky chemie MeSH
- polyethylenglykoly chemie MeSH
- stabilita léku MeSH
- teplota * MeSH
- zlato chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- koloidy MeSH
- kvartérní amoniové sloučeniny MeSH
- ligandy MeSH
- polyethylenglykoly MeSH
- zlato MeSH