Nejvíce citovaný článek - PubMed ID 12032305
Our understanding of how the mammalian somatosensory system detects noxious cold is still limited. While the role of TRPM8 in signaling mild non-noxious coolness is reasonably understood, the molecular identity of channels transducing painful cold stimuli remains unresolved. TRPC5 was originally described to contribute to moderate cold responses of dorsal root ganglia neurons in vitro, but mice lacking TRPC5 exhibited no change in behavioral responses to cold temperature. The question of why a channel endowed with the ability to be activated by cooling contributes to the cold response only under certain conditions is currently being intensively studied. It seems increasingly likely that the physiological detection of cold temperatures involves multiple different channels and mechanisms that modulate the threshold and intensity of perception. In this review, we aim to outline how TRPC5 may contribute to these mechanisms and what molecular features are important for its role as a cold sensor.
- Klíčová slova
- Cold sensation, Orai1, Stromal interaction molecule 1, Thermo-TRP channel, Transient receptor potential canonical, Voltage-dependent gating,
- MeSH
- kationtové kanály TRPC * metabolismus MeSH
- kationtové kanály TRPM metabolismus MeSH
- lidé MeSH
- myši MeSH
- nízká teplota * MeSH
- spinální ganglia metabolismus fyziologie MeSH
- vnímání teploty * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kationtové kanály TRPC * MeSH
- kationtové kanály TRPM MeSH
- TRPC5 protein, human MeSH Prohlížeč
- Trpc5 protein, mouse MeSH Prohlížeč
Lysophosphatidylcholine (LPC) is a bioactive lipid present at high concentrations in inflamed and injured tissues where it contributes to the initiation and maintenance of pain. One of its important molecular effectors is the transient receptor potential canonical 5 (TRPC5), but the explicit mechanism of the activation is unknown. Using electrophysiology, mutagenesis and molecular dynamics simulations, we show that LPC-induced activation of TRPC5 is modulated by xanthine ligands and depolarizing voltage, and involves conserved residues within the lateral fenestration of the pore domain. Replacement of W577 with alanine (W577A) rendered the channel insensitive to strong depolarizing voltage, but LPC still activated this mutant at highly depolarizing potentials. Substitution of G606 located directly opposite position 577 with tryptophan rescued the sensitivity of W577A to depolarization. Molecular simulations showed that depolarization widens the lower gate of the channel and this conformational change is prevented by the W577A mutation or removal of resident lipids. We propose a gating scheme in which depolarizing voltage and lipid-pore helix interactions act together to promote TRPC5 channel opening.
- Klíčová slova
- Lysophosphatidylcholine, Pain, TRP channels, TRPC channels, Voltage-dependent gating,
- MeSH
- gating iontového kanálu účinky léků MeSH
- HEK293 buňky MeSH
- kationtové kanály TRPC * metabolismus genetika chemie MeSH
- lidé MeSH
- lysofosfatidylcholiny * metabolismus farmakologie MeSH
- lysofosfolipidy metabolismus farmakologie MeSH
- membránové potenciály účinky léků MeSH
- mutace MeSH
- simulace molekulární dynamiky * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kationtové kanály TRPC * MeSH
- lysofosfatidylcholiny * MeSH
- lysofosfolipidy MeSH
- TRPC5 protein, human MeSH Prohlížeč