Nejvíce citovaný článek - PubMed ID 12107473
Variations in immunofluorescent antibody response against Trichobilharzia and Schistosoma antigens in compatible and incompatible hosts
Cercarial dermatitis (CD) is an allergic skin disease that rises in consequence of infection by invasive stages (cercariae) of trematodes of the family Schistosomatidae. CD has been considered a re-emerging disease, human cases have been reported from all continents, and tourism-threatening outbreaks occur even in frequented recreational areas. Although the symptoms of CD are generally known, the data on immune response in human patients are sporadic and incomprehensive. In the present study, we attempted to correlate the symptoms, personal history, and time course of CD in human patients with differential cell counts, dynamics of selected cytokines, and dynamics and quality of antibody response. By a systematic follow-up, we obtained a uniquely complex dataset from ten persons accidentally and concurrently infected by the same parasite species in the same locality. The onset of CD was significantly faster, and the symptoms were heavier in participants with a history of CD if compared to naive ones, who, however, also developed some of the symptoms. The repeatedly infected persons had elevated proportion of eosinophils 1 week post exposure (p.e.) and a stronger specific IgG but not IgM response, whereas specific IgE response was not observed. Increased serum levels of IL-4 occurred 1 and 3 week(s) p.e. in all participants. There was high variability in individual immunoblot patterns of IgG response, and no antigen with a universal diagnostic potential was confirmed. The presented analyses suggested that a complex approach can improve the accuracy of the diagnosis of CD, but component data should be interpreted carefully.
- Klíčová slova
- Allergy, Diagnosis, Immunity, Schistosome, Skin, Trichobilharzia,
- MeSH
- dermatitida imunologie parazitologie MeSH
- dospělí MeSH
- epidemický výskyt choroby MeSH
- imunoglobulin E krev MeSH
- imunoglobulin G krev MeSH
- imunoglobulin M krev MeSH
- infekce červy třídy Trematoda diagnóza imunologie parazitologie MeSH
- interleukin-4 krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- následné studie MeSH
- protilátky protozoální krev MeSH
- průzkumy a dotazníky MeSH
- rybníky parazitologie MeSH
- Schistosomatidae imunologie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- IL4 protein, human MeSH Prohlížeč
- imunoglobulin E MeSH
- imunoglobulin G MeSH
- imunoglobulin M MeSH
- interleukin-4 MeSH
- protilátky protozoální MeSH
To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts' immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes.
- MeSH
- biologická adaptace * MeSH
- interakce hostitele a patogenu * MeSH
- kachny parazitologie MeSH
- metabolické sítě a dráhy genetika MeSH
- molekulární sekvence - údaje MeSH
- Schistosomatidae genetika růst a vývoj MeSH
- sekvenční analýza DNA MeSH
- stadia vývoje MeSH
- stanovení celkové genové exprese * MeSH
- výpočetní biologie * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The nasal avian schistosome Trichobilharzia regenti spends part of its intravertebrate period of life within the central nervous system. Migration of the parasites can be accompanied by neuromotor disorders or paralysis in natural definitive hosts (ducks) and even in laboratory mammals. Cercariae are also able to penetrate human skin and induce cercarial dermatitis. While the cellular and antibody responses against cercariae and migrating schistosomula have been investigated in mice, little is known about immune reactions in birds. This study first describes the dynamics of antibody response in infected ducks and identifies frequently recognized antigens that may serve as diagnostic markers of infection by T. regenti. METHODS: Groups of 35 domestic ducks and 10 mallards were exposed to different doses of T. regenti cercariae. Sera were collected at predefined time intervals and tested by ELISA for the presence of specific anti-cercarial IgY and IgM. Antigens recognized by the antibodies were identified on Western blots of cercariae and schistosomula. The applicability in immunodiagnostics was statistically evaluated by expression of specificity and sensitivity values for individual antigens. RESULTS: In ELISA, the levels of anti-cercarial IgM peaked on day 15 pi. Increased production of IgY associated with the later phases of infection was observed in most individuals around 20 dpi and culminated 30 dpi. The time course of antibody response did not differ among experimental groups, variations were only observed in the levels of specific IgY which depended rather on the age of ducks at the time of infection than on the infectious dose. On Western blots, 40 cercarial and 7 schistosomular antigens were recognized by IgY from infected ducks. Among them, 4 cercarial antigens of 50, 47, 32 and 19 kDa provided the most sensitive and specific reactions. CONCLUSIONS: Antigens of cercariae and schistosomula elicited distinct antibody response in ducks, which correlated positively with the age of animals at the time of infection. Several antigens originating in cercariae and fewer in schistosomula were recognized by IgY with diverse sensitivity and specificity; only a few seemed to be common to both stages. Four of them were considered as the most promising candidates for immunodiagnostics.
- MeSH
- antigeny helmintové imunologie MeSH
- imunoglobulin M krev MeSH
- imunoglobuliny krev MeSH
- infekce červy třídy Trematoda krev imunologie parazitologie veterinární MeSH
- kachny * MeSH
- nemoci ptáků krev imunologie parazitologie MeSH
- protilátky helmintové krev MeSH
- Schistosomatidae * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny helmintové MeSH
- IgY MeSH Prohlížeč
- imunoglobulin M MeSH
- imunoglobuliny MeSH
- protilátky helmintové MeSH
Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis.
- MeSH
- biodiverzita MeSH
- epidemický výskyt choroby MeSH
- hostitelská specificita MeSH
- lidé MeSH
- nemoci ptáků parazitologie přenos MeSH
- parazitární onemocnění kůže epidemiologie imunologie parazitologie prevence a kontrola MeSH
- ptáci MeSH
- schistosomóza epidemiologie imunologie parazitologie prevence a kontrola MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Cercarial dermatitis (swimmer's itch) is a common non-communicable water-borne disease. It is caused by penetration of the skin by larvae (cercariae) of schistosomatid flukes and develops as a maculopapular skin eruption after repeated contacts with the parasites. The number of outbreaks of the disease is increasing, and cercarial dermatitis can therefore be considered as an emerging problem. Swimmer's itch is mostly associated with larvae of the bird schistosomes of Trichobilharzia spp. Recent results have shown that mammalian infections (including man) manifest themselves as an allergic reaction which is able to trap and eliminate parasites in the skin. Studies on mammals experimentally infected by bird schistosome cercariae revealed, however, that during primary infection, parasites are able to escape from the skin to the lungs or central nervous system. This review covers basic information on detection of the infectious agents in the field and the clinical course of the disease, including other pathologies which may develop after infection by cercariae, and diagnosis of the disease.
- MeSH
- centrální nervový systém mikrobiologie MeSH
- cerkárie imunologie MeSH
- dermatitida diagnóza imunologie parazitologie MeSH
- kůže mikrobiologie patologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- plavání MeSH
- plíce mikrobiologie MeSH
- Schistosoma MeSH
- schistosomóza komplikace diagnóza imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Bird schistosomes, besides being responsible for bird schistosomiasis, are known as causative agents of cercarial dermatitis. Cercarial dermatitis develops after repeated contact with cercariae, mainly of the genus Trichobilharzia, and was described as a type I, immediate hypersensitivity response, followed by a late phase reaction. The immune response is Th2 polarized. Primary infection leads to an inflammatory reaction that is insufficient to eliminate the schistosomes and schistosomula may continue its migration through the body of avian as well as mammalian hosts. However, reinfections of experimental mice revealed an immune reaction leading to destruction of the majority of schistosomula in the skin. Infection with the nasal schistosome Trichobilharzia regenti probably represents a higher health risk than infections with visceral schistosomes. After the skin penetration by the cercariae, parasites migrate via the peripheral nerves, spinal cord to the brain, and terminate their life cycle in the nasal mucosa of waterfowl where they lay eggs. T. regenti can also get over skin barrier and migrate to CNS of experimental mice. During heavy infections, neuroinfections of both birds and mammals lead to the development of a cellular immune response and axonal damage in the vicinity of the schistosomulum. Such infections are manifest by neuromotor disorders.
- Publikační typ
- časopisecké články MeSH