Nejvíce citovaný článek - PubMed ID 12403349
Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole (Clethrionomys glareolus) distributed across Europe. To identify the loci subject to selection associated with climate variation, we applied multiple genotype-environment association methods, two univariate and one multivariate, and controlled for the effect of population structure. In total, we identified 213 candidate loci for adaptation, 74 of which were located within genes. In particular, we identified signatures of selection in candidate genes with functions related to lipid metabolism and the immune system. Using the results of redundancy analysis, we demonstrated that population history and climate have joint effects on the genetic variation in the pan-European metapopulation. Furthermore, by examining only candidate loci, we found that annual mean temperature is an important factor shaping adaptive genetic variation in the bank vole. By combining landscape genomic approaches, our study sheds light on genome-wide adaptive differentiation and the spatial distribution of variants underlying adaptive variation influenced by local climate in bank voles.
- Klíčová slova
- Clethrionomys glareolus, climate gradient, genomic analysis, local adaptations, rodent,
- Publikační typ
- časopisecké články MeSH
Urgent examination of cerebrospinal fluid (CSF) provides immediate important information about the character of central nervous system (CNS) impairment. Although this examination includes energy parameters such as glucose and lactate concentrations, it does not commonly use Coefficient of Energy Balance (CEB). In this study, we focused on CEB because it enables more exact assessment of actual energy state in the CSF compartment than glucose and lactate alone. CEB informs about the actual functioning condition of present cells, and it does not require any other analysis or costs. Using Kruskal-Wallis ANOVA, we examined a large CSF sample (n = 8183) and we compared CEB values among groups with different cytological syndromes. We found a statistically significant difference of CEB between the group with granulocyte pleocytosis and the control group. These results indicate a high degree of anaerobic metabolism caused by the oxidative burst of neutrophils. Similarly, we found a statistically significant difference of CEB between the control group and groups with tumorous oligocytosis plus pleocytosis and monocyte pleocytosis. This difference can be attributed to the oxidative burst of macrophages. Our findings suggest that CEB combined with CSF cytology has a great importance for diagnosis, differential diagnosis, and early therapy of CNS diseases.
- MeSH
- časná diagnóza * MeSH
- diferenciální diagnóza MeSH
- energetický metabolismus * MeSH
- fagocyty metabolismus patologie MeSH
- lidé MeSH
- nádory centrálního nervového systému mozkomíšní mok metabolismus MeSH
- nemoci centrálního nervového systému mozkomíšní mok diagnóza metabolismus MeSH
- referenční hodnoty MeSH
- respirační vzplanutí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH