Nejvíce citovaný článek - PubMed ID 12763105
Spontaneous preterm delivery presents one of the most complex challenges in obstetrics and is a leading cause of perinatal morbidity and mortality. Although it is a common endpoint for multiple pathological processes, the mechanisms governing the etiological complexity of spontaneous preterm birth and the placental responses are poorly understood. This study examined placental tissues collected between May 2019 and May 2022 from a well-defined cohort of women who experienced spontaneous preterm birth (n = 72) and healthy full-term deliveries (n = 30). Placental metabolomic profiling of polar metabolites was performed using Ultra-High Performance Liquid Chromatography/Mass Spectrometry (UHPLC/MS) analysis. The resulting data were analyzed using multi- and univariate statistical methods followed by unsupervised clustering. A comprehensive metabolomic evaluation of the placenta revealed that spontaneous preterm birth was associated with significant changes in the levels of 34 polar metabolites involved in intracellular energy metabolism and biochemical activity, including amino acids, purine metabolites, and small organic acids. We found that neither the preterm delivery phenotype nor the inflammatory response explain the reported differential placental metabolome. However, unsupervised clustering revealed two molecular subtypes of placentas from spontaneous preterm pregnancies exhibiting differential enrichment of clinical parameters. We also identified differences between early and late preterm samples, suggesting distinct placental functions in early spontaneous preterm delivery. Altogether, we present evidence that spontaneous preterm birth is associated with significant changes in the level of placental polar metabolites. Dysregulation of the placental metabolome may underpin important (patho)physiological mechanisms involved in preterm birth etiology and long-term neonatal outcomes.
- Klíčová slova
- inflammation, metabolism, metabolomics, placenta, preterm birth,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Cerebral oxygenation monitoring may reduce the risk of death and neurologic complications in extremely preterm infants, but no such effects have yet been demonstrated in preterm infants in sufficiently powered randomised clinical trials. The objective of the SafeBoosC III trial is to investigate the benefits and harms of treatment based on near-infrared spectroscopy (NIRS) monitoring compared with treatment as usual for extremely preterm infants. METHODS/DESIGN: SafeBoosC III is an investigator-initiated, multinational, randomised, pragmatic phase III clinical trial. Inclusion criteria will be infants born below 28 weeks postmenstrual age and parental informed consent (unless the site is using 'opt-out' or deferred consent). Exclusion criteria will be no parental informed consent (or if 'opt-out' is used, lack of a record that clinical staff have explained the trial and the 'opt-out' consent process to parents and/or a record of the parents' decision to opt-out in the infant's clinical file); decision not to provide full life support; and no possibility to initiate cerebral NIRS oximetry within 6 h after birth. Participants will be randomised 1:1 into either the experimental or control group. Participants in the experimental group will be monitored during the first 72 h of life with a cerebral NIRS oximeter. Cerebral hypoxia will be treated according to an evidence-based treatment guideline. Participants in the control group will not undergo cerebral oxygenation monitoring and will receive treatment as usual. Each participant will be followed up at 36 weeks postmenstrual age. The primary outcome will be a composite of either death or severe brain injury detected on any of the serial cranial ultrasound scans that are routinely performed in these infants up to 36 weeks postmenstrual age. Severe brain injury will be assessed by a person blinded to group allocation. To detect a 22% relative risk difference between the experimental and control group, we intend to randomise a cohort of 1600 infants. DISCUSSION: Treatment guided by cerebral NIRS oximetry has the potential to decrease the risk of death or survival with severe brain injury in preterm infants. There is an urgent need to assess the clinical effects of NIRS monitoring among preterm neonates. TRIAL REGISTRATION: ClinicalTrial.gov, NCT03770741. Registered 10 December 2018.
- Klíčová slova
- Near infrared spectroscopy, Preterm, Protocol, Randomised clinical trial,
- MeSH
- blízká infračervená spektroskopie * metody MeSH
- gestační stáří MeSH
- klinické zkoušky, fáze III jako téma MeSH
- lidé MeSH
- monitorování fyziologických funkcí * metody MeSH
- mozková hypoxie * diagnostické zobrazování prevence a kontrola MeSH
- novorozenci extrémně nezralí * MeSH
- novorozenec MeSH
- oxymetrie * metody MeSH
- pragmatické klinické studie jako téma MeSH
- velký mozek * diagnostické zobrazování MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- protokol klinické studie MeSH
BACKGROUND: Infants born extremely preterm are at high risk of dying or suffering from severe brain injuries. Treatment guided by monitoring of cerebral oxygenation may reduce the risk of death and neurologic complications. The SafeBoosC III trial evaluates the effects of treatment guided by cerebral oxygenation monitoring versus treatment as usual. This article describes the detailed statistical analysis plan for the main publication, with the aim to prevent outcome reporting bias and data-driven analyses. METHODS/DESIGN: The SafeBoosC III trial is an investigator-initiated, randomised, multinational, pragmatic phase III trial with a parallel group structure, designed to investigate the benefits and harms of treatment based on cerebral near-infrared spectroscopy monitoring compared with treatment as usual. Randomisation will be 1:1 stratified for neonatal intensive care unit and gestational age (lower gestational age (< 26 weeks) compared to higher gestational age (≥ 26 weeks)). The primary outcome is a composite of death or severe brain injury at 36 weeks postmenstrual age. Primary analysis will be made on the intention-to-treat population for all outcomes, using mixed-model logistic regression adjusting for stratification variables. In the primary analysis, the twin intra-class correlation coefficient will not be considered. However, we will perform sensitivity analyses to address this. Our simulation study suggests that the inclusion of multiple births is unlikely to significantly affect our assessment of intervention effects, and therefore we have chosen the analysis where the twin intra-class correlation coefficient will not be considered as the primary analysis. DISCUSSION: In line with the Declaration of Helsinki and the International Conference on Harmonization Good Clinical Practice guidelines, we have developed and published this statistical analysis plan for the SafeBoosC III trial, prior to any data analysis. TRIAL REGISTRATION: ClinicalTrials.org, NCT03770741. Registered on 10 December 2018.
- Klíčová slova
- Cerebral oximetry, Extremely preterm, Near-infrared spectroscopy, Randomised clinical trial, Statistical analysis plan,
- MeSH
- blízká infračervená spektroskopie přístrojové vybavení metody MeSH
- jednotky intenzivní péče o novorozence MeSH
- klinické zkoušky, fáze III jako téma MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- monitorování fyziologických funkcí přístrojové vybavení metody MeSH
- mozek diagnostické zobrazování metabolismus patologie MeSH
- mozková hypoxie diagnóza epidemiologie terapie MeSH
- multicentrické studie jako téma MeSH
- novorozenci extrémně nezralí * MeSH
- novorozenec MeSH
- pragmatické klinické studie jako téma MeSH
- randomizované kontrolované studie jako téma MeSH
- terapie náhlých příhod metody MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- dopisy MeSH
- Názvy látek
- kyslík MeSH