Nejvíce citovaný článek - PubMed ID 14769846
The P2X4 receptor (P2X4R) is a member of a family of purinergic channels activated by extracellular ATP through three orthosteric binding sites and allosterically regulated by ivermectin (IVM), a broad-spectrum antiparasitic agent. Treatment with IVM increases the efficacy of ATP to activate P2X4R, slows both receptor desensitization during sustained ATP application and receptor deactivation after ATP washout, and makes the receptor pore permeable to NMDG+, a large organic cation. Previously, we developed a Markov model based on the presence of one IVM binding site, which described some effects of IVM on rat P2X4R. Here we present two novel models, both with three IVM binding sites. The simpler one-layer model can reproduce many of the observed time series of evoked currents, but does not capture well the short time scales of activation, desensitization, and deactivation. A more complex two-layer model can reproduce the transient changes in desensitization observed upon IVM application, the significant increase in ATP-induced current amplitudes at low IVM concentrations, and the modest increase in the unitary conductance. In addition, the two-layer model suggests that this receptor can exist in a deeply inactivated state, not responsive to ATP, and that its desensitization rate can be altered by each of the three IVM binding sites. In summary, this study provides a detailed analysis of P2X4R kinetics and elucidates the orthosteric and allosteric mechanisms regulating its channel gating.
- MeSH
- adenosintrifosfát metabolismus MeSH
- algoritmy MeSH
- gating iontového kanálu účinky léků fyziologie MeSH
- HEK293 buňky MeSH
- ivermektin metabolismus MeSH
- lidé MeSH
- Markovovy řetězce MeSH
- metoda terčíkového zámku MeSH
- purinergní receptory P2X4 účinky léků metabolismus fyziologie MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
- ivermektin MeSH
- purinergní receptory P2X4 MeSH
Allosteric modulators of ligand-gated receptor channels induce conformational changes of the entire protein that alter potencies and efficacies for orthosteric ligands, expressed as the half maximal effective concentration (EC50) and maximum current amplitude, respectively. Here, we studied the influence of allostery on channel pore dilation, an issue not previously addressed. Experiments were done using the rat P2X4 receptor expressed in human embryonic kidney 293T cells and gated by adenosine 5'-triphosphate (ATP) in the presence and absence of ivermectin (IVM), an established positive allosteric regulator of this channel. In the absence of IVM, this channel activates and deactivates rapidly, does not show transition from open to dilated states, desensitizes completely with a moderate rate, and recovers only fractionally during washout. IVM treatment increases the efficacy of ATP to activate the channel and slows receptor desensitization during sustained ATP application and receptor deactivation after ATP washout. The rescue of the receptor from desensitization temporally coincides with pore dilation, and the dilated channel can be reactivated after washout of ATP. Experiments with vestibular and transmembrane domain receptor mutants further established that IVM has distinct effects on opening and dilation of the channel pore, the first accounting for increased peak current amplitude and the latter correlating with changes in the EC50 and kinetics of receptor deactivation. The corresponding kinetic (Markov state) model indicates that the IVM-dependent transition from open to dilated state is coupled to receptor sensitization, which rescues the receptor from desensitization and subsequent internalization. Allosterically induced sensitization of P2X4R thus provides sustained signaling during prolonged and repetitive ATP stimulation.
- MeSH
- alosterická regulace MeSH
- gating iontového kanálu * MeSH
- HEK293 buňky MeSH
- ivermektin chemie farmakologie MeSH
- kinetika MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- purinergní receptory P2X4 chemie genetika metabolismus MeSH
- terciární struktura proteinů MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- ivermektin MeSH
- purinergní receptory P2X4 MeSH
Crystallization of the zebrafish P2X4 receptor in both open and closed states revealed conformational differences in the ectodomain structures, including the dorsal fin and left flipper domains. Here, we focused on the role of these domains in receptor activation, responsiveness to orthosteric ATP analogue agonists, and desensitization. Alanine scanning mutagenesis of the R203-L214 (dorsal fin) and the D280-N293 (left flipper) sequences of the rat P2X4 receptor showed that ATP potency/efficacy was reduced in 15 out of 26 alanine mutants. The R203A, N204A, and N293A mutants were essentially non-functional, but receptor function was restored by ivermectin, an allosteric modulator. The I205A, T210A, L214A, P290A, G291A, and Y292A mutants exhibited significant changes in the responsiveness to orthosteric analog agonists 2-(methylthio)adenosine 5'-triphosphate, adenosine 5'-(γ-thio)triphosphate, 2'(3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate, and α,β-methyleneadenosine 5'-triphosphate. In contrast, the responsiveness of L206A, N208A, D280A, T281A, R282A, and H286A mutants to analog agonists was comparable to that of the wild type receptor. Among these mutants, D280A, T281A, R282A, H286A, G291A, and Y292A also exhibited increased time-constant of the desensitizing current response. These experiments, together with homology modeling, indicate that residues located in the upper part of the dorsal fin and left flipper domains, relative to distance from the channel pore, contribute to the organization of the ATP binding pocket and to the initiation of signal transmission towards residues in the lower part of both domains. The R203 and N204 residues, deeply buried in the protein, may integrate the output signal from these two domains towards the gate. In addition, the left flipper residues predominantly account for the control of transition of channels from an open to a desensitized state.
- MeSH
- adenosintrifosfát metabolismus MeSH
- alanin genetika metabolismus MeSH
- gating iontového kanálu účinky léků MeSH
- HEK293 buňky MeSH
- ivermektin farmakologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metoda terčíkového zámku MeSH
- molekulární sekvence - údaje MeSH
- mutageneze MeSH
- purinergní receptory P2X - agonisté farmakologie MeSH
- purinergní receptory P2X4 chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- simulace molekulární dynamiky MeSH
- terciární struktura proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- alanin MeSH
- ivermektin MeSH
- purinergní receptory P2X - agonisté MeSH
- purinergní receptory P2X4 MeSH
The binding of ATP to trimeric P2X receptors (P2XR) causes an enlargement of the receptor extracellular vestibule, leading to opening of the cation-selective transmembrane pore, but specific roles of vestibule amino acid residues in receptor activation have not been evaluated systematically. In this study, alanine or cysteine scanning mutagenesis of V47-V61 and F324-N338 sequences of rat P2X4R revealed that V49, Y54, Q55, F324, and G325 mutants were poorly responsive to ATP and trafficking was only affected by the V49 mutation. The Y54F and Y54W mutations, but not the Y54L mutation, rescued receptor function, suggesting that an aromatic residue is important at this position. Furthermore, the Y54A and Y54C receptor function was partially rescued by ivermectin, a positive allosteric modulator of P2X4R, suggesting a rightward shift in the potency of ATP to activate P2X4R. The Q55T, Q55N, Q55E, and Q55K mutations resulted in non-responsive receptors and only the Q55E mutant was ivermectin-sensitive. The F324L, F324Y, and F324W mutations also rescued receptor function partially or completely, ivermectin action on channel gating was preserved in all mutants, and changes in ATP responsiveness correlated with the hydrophobicity and side chain volume of the substituent. The G325P mutant had a normal response to ATP, suggesting that G325 is a flexible hinge. A topological analysis revealed that the G325 and F324 residues disrupt a β-sheet upon ATP binding. These results indicate multiple roles of the extracellular vestibule amino acid residues in the P2X4R function: the V49 residue is important for receptor trafficking to plasma membrane, the Y54 and Q55 residues play a critical role in channel gating and the F324 and G325 residues are critical for vestibule widening.
- MeSH
- adenosintrifosfát chemie metabolismus MeSH
- alosterická regulace MeSH
- aminokyseliny chemie genetika metabolismus MeSH
- bodová mutace MeSH
- gating iontového kanálu účinky léků fyziologie MeSH
- HEK293 buňky MeSH
- hydrofobní a hydrofilní interakce MeSH
- ivermektin chemie farmakologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metoda terčíkového zámku MeSH
- molekulární modely MeSH
- mutageneze cílená MeSH
- purinergní receptory P2X4 chemie genetika metabolismus MeSH
- sekundární struktura proteinů MeSH
- transfekce MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- adenosintrifosfát MeSH
- aminokyseliny MeSH
- ivermektin MeSH
- purinergní receptory P2X4 MeSH
Mammalian P2X receptors contain 10 conserved cysteine residues in their ectodomains, which form five disulfide bonds (SS1-5). Here, we analyzed the relevance of these disulfide pairs in rat P2X4 receptor function by replacing one or both cysteines with alanine or threonine, expressing receptors in HEK293 cells and studying their responsiveness to ATP in the absence and presence of ivermectin, an allostenic modulator of these channels. Response to ATP was not altered when both cysteines forming the SS3 bond (C132-C159) were replaced with threonines. Replacement of SS1 (C116-C165), SS2 (C126-C149) and SS4 (C217-C227), but not SS5 (C261-C270), cysteine pairs with threonines resulted in decreased sensitivity to ATP and faster deactivation times. The maximum current amplitude was reduced in SS2, SS4 and SS5 double mutants and could be partially rescued by ivermectin in SS2 and SS5 double mutants. This response pattern was also observed in numerous single residue mutants, but receptor function was not affected when the 217 cysteine was replaced with threonine or arginine or when the 261 cysteine was replaced with alanine. These results suggest that the SS1, SS2 and SS4 bonds contribute substantially to the structure of the ligand binding pocket, while the SS5 bond located towards the transmembrane domain contributes to receptor gating.
- MeSH
- cystein chemie genetika MeSH
- gating iontového kanálu fyziologie MeSH
- HEK293 buňky MeSH
- konzervovaná sekvence MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- purinergní receptory P2X4 chemie genetika metabolismus MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- cystein MeSH
- purinergní receptory P2X4 MeSH
The functional relevance of aromatic residues in the upper part of the transmembrane domain-1 of purinergic P2X receptors (P2XRs) was examined. Replacement of the conserved Tyr residue with Ala had a receptor-specific effect: the P2X1R was non-functional, the P2X2R, P2X4R, and P2X3R exhibited enhanced sensitivity to ATP and alphabeta-meATP accompanied by prolonged decay of current after washout of agonists, and the P2X7R sensitivity for agonists was not affected, though decay of current was delayed. The replacement of the P2X4R-Tyr42 with other amino acids revealed the relevance of an aromatic residue at this position. Mutation of the neighboring Phe and ipsilateral Tyr/Trp residues, but not the contralateral Phe residue, also affected the P2X2R, P2X3R, and P2X4R function. Double mutation of ipsilateral Tyr42 and Trp46 P2X4R residues restored receptor function, whereas the corresponding P2X2R double mutant was not functional. In contrast, mutation of the contralateral Phe48 residue in the P2X4R-Y42A mutant had no effect. These results indicate that aromatic residues in the upper part of TM1 play important roles in the three-dimensional structure of the P2XRs and that they are required not only for ion conductivity but also for specificity of agonist binding and/or channel gating.
- MeSH
- adenosintrifosfát analogy a deriváty farmakologie MeSH
- aminokyseliny aromatické genetika metabolismus MeSH
- biofyzika MeSH
- elektrická stimulace MeSH
- konformace proteinů MeSH
- lidé MeSH
- membránové potenciály účinky léků genetika MeSH
- metoda terčíkového zámku metody MeSH
- mutageneze genetika MeSH
- purinergní receptory P2 klasifikace genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- signální transdukce účinky léků fyziologie MeSH
- terciární struktura proteinů genetika fyziologie MeSH
- transfekce metody MeSH
- transformované buněčné linie MeSH
- vazba proteinů genetika fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zelené fluorescenční proteiny genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- adenosintrifosfát MeSH
- alpha,beta-methyleneadenosine 5'-triphosphate MeSH Prohlížeč
- aminokyseliny aromatické MeSH
- enhanced green fluorescent protein MeSH Prohlížeč
- purinergní receptory P2 MeSH
- zelené fluorescenční proteiny MeSH
Ivermectin (IVM), a large macrocyclic lactone, specifically enhances P2X(4) receptor-channel function by interacting with residues of transmembrane (TM) helices in the open conformation state. In this paper, we used cysteine-scanning mutagenesis of rat P2X(4)-TMs to identify and map residues of potential importance for channel gating and interaction with IVM. The receptor function was unchanged by mutations in 29 different residues, and among them, the IVM effects were altered in Gln(36), Leu(40), Val(43), Val(47), Trp(50), Asn(338), Gly(342), Leu(346), Ala(349), and Ile(356) mutants. The substitution-sensitive Arg(33) and Cys(353) mutants could also be considered as IVM-sensitive hits. The pattern of these 12 residues was consistent with helical topology of both TMs, with every third or fourth amino acid affected by substitution. These predominantly hydrophobic-nonpolar residues are also present in the IVM-sensitive Schistosoma mansoni P2X subunit. They lie on the same side of their helices and could face lipids in the open conformation state and provide the binding pocket for IVM. In contrast, the IVM-independent hits Met(31), Tyr(42), Gly(45), Val(49), Gly(340), Leu(343), Ala(344), Gly(347), Thr(350), Asp(354), and Val(357) map on the opposite side of their helices, probably facing the pore of receptor or protein and playing important roles in gating.
- MeSH
- antiparazitární látky metabolismus MeSH
- buněčné linie MeSH
- gating iontového kanálu * MeSH
- ivermektin metabolismus MeSH
- konformace proteinů * MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metoda terčíkového zámku MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- purinergní receptory P2 chemie genetika metabolismus MeSH
- purinergní receptory P2X4 MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- antiparazitární látky MeSH
- ivermektin MeSH
- P2RX4 protein, human MeSH Prohlížeč
- P2rx4 protein, rat MeSH Prohlížeč
- purinergní receptory P2 MeSH
- purinergní receptory P2X4 MeSH