Nejvíce citovaný článek - PubMed ID 15158771
Down-regulation of gp63 in Leishmania amazonensis reduces its early development in Lutzomyia longipalpis
INTRODUCTION: Sand flies (Diptera: Phlebotominae) belonging to the Lutzomyia genus transmit Leishmania infantum parasites. To understand the complex interaction between the vector and the parasite, we have been investigating the sand fly immune responses during the Leishmania infection. Our previous studies showed that genes involved in the IMD, Toll, and Jak-STAT immunity pathways are regulated upon Leishmania and bacterial challenges. Nevertheless, the parasite can thrive in the vectors' gut, indicating the existence of mechanisms capable of modulating the vector defenses, as was already seen in mammalian Leishmania infections. METHODS RESULTS AND DISCUSSION: In this study, we investigated the expression of Lutzomyia longipalpis genes involved in regulating the Toll pathway under parasitic infection. Leishmania infantum infection upregulated the expression of two L. longipalpis genes coding for the putative repressors cactus and protein tyrosine phosphatase SHP. These findings suggest that the parasite can modulate the vectors' immune response. In mammalian infections, the Leishmania surface glycoprotein GP63 is one of the inducers of host immune depression, and one of the known effectors is SHP. In L. longipalpis we found a similar effect: a genetically modified strain of Leishmania amazonensis over-expressing the metalloprotease GP63 induced a higher expression of the sand fly SHP indicating that the L. longipalpis SHP and parasite GP63 increased expressions are connected. Immuno-stained microscopy of L. longipalpis LL5 embryonic cells cultured with Leishmania strains or parasite conditioned medium showed cells internalization of parasite GP63. A similar internalization of GP63 was observed in the sand fly gut tissue after feeding on parasites, parasite exosomes, or parasite conditioned medium, indicating that GP63 can travel through cells in vitro or in vivo. When the sand fly SHP gene was silenced by RNAi and females infected by L. infantum, parasite loads decreased in the early phase of infection as expected, although no significant differences were seen in late infections of the stomodeal valve. CONCLUSIONS: Our findings show the possible role of a pathway repressor involved in regulating the L. longipalpis immune response during Leishmania infections inside the insect. In addition, they point out a conserved immunosuppressive effect of GP63 between mammals and sand flies in the early stage of parasite infection.
- Klíčová slova
- SHP-2, immunity, protein-tyrosine phosphatase, sand fly, signaling pathway, vector-parasite interaction,
- MeSH
- imunosupresivní léčba MeSH
- kultivační média speciální MeSH
- Leishmania infantum * MeSH
- leishmanióza * MeSH
- Phlebotomus * MeSH
- Psychodidae * MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kultivační média speciální MeSH
Leishmania infantum chagasi is the causative agent and Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the Americas. We investigated the expression of Leishmania genes within L. longipalpis after artificial infection. mRNAs from genes involved in sugar and amino acid metabolism were upregulated at times of high parasite proliferation inside the insect. mRNAs from genes involved in metacyclogenesis had higher expression in late stages of infection. Other modulated genes of interest were involved in immunomodulation, purine salvage pathway and protein recycling. These data reveal aspects of the adaptation of the parasite to the microenvironment of the vector gut and reflect the preparation for infection in the vertebrate.
- MeSH
- exprese genu MeSH
- hmyz - vektory parazitologie MeSH
- Leishmania infantum genetika MeSH
- Leishmania izolace a purifikace MeSH
- leishmanióza viscerální epidemiologie parazitologie přenos MeSH
- polymerázová řetězová reakce s reverzní transkripcí metody MeSH
- Psychodidae genetika parazitologie MeSH
- stadia vývoje MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Brazílie MeSH
BACKGROUND: Lipophosphoglycan (LPG) is a dominant surface molecule of Leishmania promastigotes. Its species-specific polymorphisms are found mainly in the sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Leishmania amazonensis is one of the most important species causing human cutaneous leishmaniasis in the New World. Here, we describe LPG intraspecific polymorphisms in two Le. amazonensis reference strains and their role during the development in three sand fly species. RESULTS: Strains isolated from Lutzomyia flaviscutellata (PH8) and from a human patient (Josefa) displayed structural polymorphism in the LPG repeat units, possessing side chains with 1 and 2 β-glucose or 1 to 3 β-galactose, respectively. Both strains successfully infected permissive vectors Lutzomyia longipalpis and Lutzomyia migonei and could colonize their stomodeal valve and differentiate into metacyclic forms. Despite bearing terminal galactose residues on LPG, Josefa could not sustain infection in the restrictive vector Phlebotomus papatasi. CONCLUSIONS: LPG polymorphisms did not affect the ability of Le. amazonensis to develop late-stage infections in permissive vectors. However, the non-establishment of infection in Ph. papatasi by Josefa strain suggested other LPG-independent factors in this restrictive vector.
- Klíčová slova
- Leishmania amazonensis, Lipophosphoglycan, Lutzomyia longipalpis, Lutzomyia migonei, Phlebotomus papatasi, Vector-parasite interaction,
- MeSH
- glykosfingolipidy analýza MeSH
- Leishmania chemie růst a vývoj izolace a purifikace MeSH
- lidé MeSH
- Psychodidae parazitologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykosfingolipidy MeSH
- lipophosphonoglycan MeSH Prohlížeč