Most cited article - PubMed ID 15158787
Synthesis and antiviral activity of 2,4-diamino-5-cyano-6-[2-(phosphonomethoxy)ethoxy]pyrimidine and related compounds
A series of 5-substituted 2-amino-4,6-dihydroxypyrimidines were prepared by a modified condensation of the corresponding monosubstituted malonic acid diesters with guanidine in an excess of sodium ethoxide. The optimized procedure using Vilsmeier-Haack-Arnold reagent, followed by immediate deprotection of the (dimethylamino)methylene protecting groups, has been developed to convert the 2-amino-4,6-dihydroxypyrimidine analogs to novel 5-substituted 2-amino-4,6-dichloropyrimidines in high yields. Pilot screening for biological properties of the prepared compounds was done in mouse peritoneal cells using the in vitro nitric oxide (NO) assay. Irrespective of the substituent at the 5 position, 2-amino-4,6-dichloropyrimidines inhibited immune-activated NO production. The most effective was 5-fluoro-2-amino-4,6-dichloropyrimidine with an IC 50 of 2 µM (higher activity than the most potent reference compound) while the IC 50s of other derivatives were within the range of 9-36 µM. The 2-amino-4,6-dihydroxypyrimidine counterparts were devoid of any NO-inhibitory activity. The compounds had no suppressive effects on the viability of cells. The Mechanism of action remains to be elucidated.
- Keywords
- Anti-inflammatory, NO, Nitric oxide, Pyrimidine,
- Publication type
- Journal Article MeSH
A convenient and efficient synthesis of a novel class of acyclic nucleoside phosphonates derived from 2-(phosphonomethoxy)propanoic acid has been developed. The key step of the synthesis is the optimized oxidation of the 3-hydroxy-2-(phosphonomethoxy)propyl (HPMP) analogues to the corresponding 2'-carboxy-PME (CPME) derivatives using the TEMPO/NaClO2/NaClO oxidizing system. Although (S)-3-(adenin-9-yl)-2-(phosphonomethoxy)propanoic acid ((S)-CPMEA) has been designed as a compound with potential anti-HIV activity, none of the newly prepared CPME analogues exhibited any antiviral activity.
- Keywords
- Acyclic nucleoside phosphonates, Antiviral, CPMEA, HPMPA, Microwave, Oxidation, PMEA, TEMPO,
- Publication type
- Journal Article MeSH
Polysubstituted pyrimidinylphosphonic and 1,3,5-triazinylphosphonic acids with potential biological properties were prepared in high yields by the microwave-assisted Michaelis-Arbuzov reaction of trialkyl phosphite with the corresponding halopyrimidines and halo-1,3,5-triazines, respectively, followed by the standard deprotection of the phosphonate group using TMSBr in acetonitrile. 4,6-Diamino-5-chloropyrimidin-2-ylphosphonic acid (7a) was found to exhibit a weak to moderate anti-influenza activity (28-50 μM) and may represent a novel hit for further SAR studies and antiviral improvement.
- Keywords
- 1,3,5-Triazines, Influenza virus, Microwave-assisted synthesis, Phosphonic acids, Pyrimidines,
- Publication type
- Journal Article MeSH
2-Amino-4,6-bis[(phosphonomethoxy)alkoxy]pyrimidines bearing two equal or different achiral or chiral phosphonoalkoxy chains have been prepared either by aromatic nucleophilic substitution of 2-amino-4,6-dichloropyrimidine or by alkylation of 4,6-dihydroxy-2-(methylsulfanyl)pyrimidine with appropriate phosphonate-bearing building block. Alkylation of 4,6-dihydroxy-2-(methylsulfanyl)pyrimidine proved to be the method of choice for efficient preparation of variety of bisphosphonates. The enantiomeric purity of selected compounds was determined by capillary electrophoresis. Antiviral activity of bisphosphonates is discussed.
- MeSH
- Alkylation MeSH
- Antiviral Agents chemical synthesis chemistry pharmacology MeSH
- Diphosphonates chemical synthesis chemistry pharmacology MeSH
- Electrophoresis, Capillary MeSH
- HeLa Cells MeSH
- HL-60 Cells MeSH
- Humans MeSH
- Molecular Structure MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Nucleosides chemistry MeSH
- Cell Proliferation drug effects MeSH
- Pyrimidines chemical synthesis chemistry pharmacology MeSH
- Drug Screening Assays, Antitumor MeSH
- Stereoisomerism MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Antiviral Agents MeSH
- Diphosphonates MeSH
- Nucleosides MeSH
- Pyrimidines MeSH