Most cited article - PubMed ID 15479134
Effects of stable adenosine receptor agonists on bone marrow hematopoietic cells as inferred from the cytotoxic action of 5-fluorouracil
Adenosine A3 receptor knockout (A3AR KO) mice and their wild-type (WT) counterparts were compared from the point of view of their abilities to survive exposures to lethal doses of γ-radiation belonging to the range of radiation doses inducing the bone marrow acute radiation syndrome. Parameters of cumulative 30-day survival (experiment using a midlethal radiation dose) or cumulative 11-day survival (experiment using an absolutely lethal radiation dose), and of mean survival time were evaluated. The values of A3AR KO mice always reflected their higher survival in comparison with WT ones, the P values being above the limit for statistical significance after the midlethal radiation dose and standing for statistical significance after the absolutely lethal radiation dose. This finding was considered surprising, taking into account the previously obtained findings on defects in numbers and functional properties of peripheral blood cells in A3AR KO mice. Therefore, previous hematological analyses of A3AR KO mice were supplemented in the present studies with determination of serum levels of the granulocyte colony-stimulating factor, erythropoietin, and thrombopoietin. Though distinct differences in these parameters were observed between A3AR KO and WT mice, none of them could explain the relatively high postirradiation survival of A3AR KO mice. Further studies on these mice comprising also those on other than hemopoietic tissues and organs can help to clarify their relative radioresistance.
- MeSH
- Acute Radiation Syndrome genetics metabolism mortality MeSH
- Survival Rate MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Receptor, Adenosine A3 genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Receptor, Adenosine A3 MeSH
The role of the adenosine A3 receptor in hematopoiesis was studied using adenosine A3 receptor knockout (A3AR KO) mice. Hematological parameters of peripheral blood and femoral bone marrow of irradiated and untreated A3AR KO mice and their wild-type (WT) counterparts were investigated. Irradiation of the mice served as a defined hematopoiesis-damaging means enabling us to evaluate contingent differences in the pattern of experimentally induced hematopoietic suppression between the A3AR KO mice and WT mice. Defects were observed in the counts and/or functional parameters of blood cells in the A3AR KO mice. These defects include statistically significantly lower values of blood neutrophil and monocyte counts, as well as those of mean erythrocyte volume, mean erythrocyte hemoglobin, blood platelet counts, mean platelet volume, and plateletcrit, and can be considered to bear evidence of the lack of a positive role played by the adenosine A3 receptor in the hematopoietic system. Statistically significantly increased values of the bone marrow parameters studied in A3AR KO mice (femoral bone marrow cellularity, granulocyte/macrophage progenitor cells, and erythrocyte progenitor cells) can probably be explained by compensatory mechanisms attempting to offset the disorders in the function of blood elements in these mice. The pattern of the radiation-induced hematopoietic suppression was very similar in A3AR KO mice and their WT counterparts.
- MeSH
- Hematopoietic Stem Cells metabolism MeSH
- Hematopoiesis physiology MeSH
- Leukocytes, Mononuclear metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Receptor, Adenosine A3 deficiency MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Receptor, Adenosine A3 MeSH
There exists a requirement for drugs which would be useful in therapy of an acute radiation damage of a mammalian organism. The aim of the study was to evaluate survival parameters in mice exposed to a lethal γ-ray dose of 8.5 Gy and treated with single doses of an adenosine A(3) receptor agonist, IB-MECA, or a cyclooxygenase-2 (COX-2) inhibitor, meloxicam, administered alone or in a combination early after irradiation, i.e., 0.5 and 1 h post-irradiation, respectively. The assessed parameters were the mean survival time (MST) and the cumulative percentage 30-day survival (CPS). Administrations of single intraperitoneal doses of either IB-MECA 0.5 h post-irradiation or meloxicam 1 h post-irradiation resulted in statistically significant increases of MST in comparison with the control irradiated mice. Combined administration of IB-MECA and meloxicam was found to be the only treatment statistically enhancing the parameter of CPS and to lead to the most expressive increase in MST of the experimental mice. The findings add new knowledge on the action of an adenosine A3 receptor agonist and a COX-2 inhibitor in an irradiated mammalian organism and suggest the potential of both the investigated drugs in the treatment of the acute radiation damage.
- MeSH
- Adenosine analogs & derivatives pharmacology MeSH
- Adenosine A3 Receptor Agonists pharmacology MeSH
- Time Factors MeSH
- Whole-Body Irradiation adverse effects MeSH
- Cyclooxygenase 2 metabolism MeSH
- Cyclooxygenase 2 Inhibitors pharmacology MeSH
- Drug Interactions MeSH
- Meloxicam MeSH
- Survival Rate MeSH
- Mice MeSH
- Radiation-Protective Agents pharmacology MeSH
- Receptor, Adenosine A3 metabolism MeSH
- Thiazines pharmacology MeSH
- Thiazoles pharmacology MeSH
- Gamma Rays adverse effects MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine MeSH
- Adenosine A3 Receptor Agonists MeSH
- Cyclooxygenase 2 MeSH
- Cyclooxygenase 2 Inhibitors MeSH
- Meloxicam MeSH
- N(6)-(3-iodobenzyl)-5'-N-methylcarboxamidoadenosine MeSH Browser
- Radiation-Protective Agents MeSH
- Receptor, Adenosine A3 MeSH
- Thiazines MeSH
- Thiazoles MeSH
This study continues our earlier findings on the hematopoiesis-modulating effects of adenosine A1 and A3 receptor agonists that were performed on committed hematopoietic progenitor and precursor cell populations. In the earlier experiments, N (6)-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, was found to inhibit proliferation in the above-mentioned hematopoietic cell systems, whereas N (6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), an adenosine A3 receptor agonist, was found to stimulate it. The topic of this study was to evaluate the possibility that the above-mentioned adenosine receptor agonists modulate the behavior of early hematopoietic progenitor cells and hematopoietic stem cells. Flow cytometric analysis of hematopoietic stem cells in mice was employed, as well as a functional test of hematopoietic stem and progenitor cells (HSPCs). These techniques enabled us to study the effect of the agonists on both short-term repopulating ability and long-term repopulating ability, representing multipotent progenitors and hematopoietic stem cells, respectively. In a series of studies, we did not find any significant effect of adenosine agonists on HSPCs in terms of their numbers, proliferation, or functional activity. Thus, it can be concluded that CPA and IB-MECA do not significantly influence the primitive hematopoietic stem and progenitor cell pool and that the hematopoiesis-modulating action of these adenosine receptor agonists is restricted to more mature compartments of hematopoietic progenitor and precursor cells.
- MeSH
- Purinergic P1 Receptor Agonists pharmacology MeSH
- Hematopoietic Stem Cells drug effects physiology MeSH
- Hematopoiesis drug effects physiology MeSH
- Multipotent Stem Cells drug effects physiology MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Flow Cytometry MeSH
- Receptor, Adenosine A1 metabolism MeSH
- Receptor, Adenosine A3 metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Purinergic P1 Receptor Agonists MeSH
- Receptor, Adenosine A1 MeSH
- Receptor, Adenosine A3 MeSH
The review summarizes data evaluating the role of adenosine receptor signaling in murine hematopoietic functions. The studies carried out utilized either non-selective activation of adenosine receptors induced by elevation of extracellular adenosine or by administration of synthetic adenosine analogs having various proportions of selectivity for a particular receptor. Numerous studies have described stimulatory effects of non-selective activation of adenosine receptors, manifested as enhancement of proliferation of cells at various levels of the hematopoietic hierarchy. Subsequent experimental approaches, considering the hematopoiesis-modulating action of adenosine receptor agonists with a high level of selectivity to individual adenosine receptor subtypes, have revealed differential effects of various adenosine analogs. Whereas selective activation of A₁ receptors has resulted in suppression of proliferation of hematopoietic progenitor and precursor cells, that of A₃ receptors has led to stimulated cell proliferation in these cell compartments. Thus, A₁ and A₃ receptors have been found to play a homeostatic role in suppressed and regenerating hematopoiesis. Selective activation of adenosine A₃ receptors has been found to act curatively under conditions of drug- and radiation-induced myelosuppression. The findings in these and further research areas will be summarized and mechanisms of hematopoiesis-modulating action of adenosine receptor agonists will be discussed.
- MeSH
- Hematopoiesis drug effects MeSH
- Humans MeSH
- Receptors, Purinergic P1 drug effects MeSH
- Signal Transduction MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Receptors, Purinergic P1 MeSH