Most cited article - PubMed ID 15480138
Presymptomatic spondylotic cervical cord compression
Study DesignSingle-centre controlled pilot study.ObjectivesTo evaluate the effect of prophylactic surgery and to review the biases of a therapeutic trial in asymptomatic degenerative cervical cord compression (ADCC) patients.MethodsPatients with ADCC and at least 1 predictor of progression to symptomatic degenerative cervical cord myelopathy (DCM) were offered either prophylactic surgery or standard structured rehabilitation. Recruited patients were clinically followed to detect the development of symptomatic DCM.ResultsForty-one patients treated surgically and 68 patients treated non-surgically completed the minimum 36 months' follow-up; 3 recruited patients were lost from evaluation. The surgical group had a higher Neck Disability Index score and more severe MRI compression. A matched subgroup of 41 non-surgical patients was created to reduce potential bias. During the follow-up period we observed progression to symptomatic DCM in 1 surgical case (2.4%) compared to 9 patients in the non-surgical group (13.2%, P = 0.054) and 7 cases in the matched non-surgical group (17.1%, P = 0.029). We observed non-serious early postoperative complications in 4 patients, which resolved spontaneously or after surgical revision. In 9 patients with progression to DCM, the myelopathy was mild with mJOA scale 15-17. One patient in the non-surgical group and 1 patient in the surgical group who progressed to DCM underwent surgery with a good outcome.ConclusionsProphylactic surgery led to a significant decrease in proportion of ADCC patients with progression to DCM. The results justify the organisation of a large randomized multicentre trial that may demonstrate the benefit of prophylactic surgery in ADCC patients.
- Keywords
- asymptomatic degenerative cervical cord compression, degenerative cervical myelopathy, prophylactic surgery,
- Publication type
- Journal Article MeSH
Degenerative cervical myelopathy (DCM) represents the final consequence of a series of degenerative changes in the cervical spine, resulting in cervical spinal canal stenosis and mechanical stress on the cervical spinal cord. This process leads to subsequent pathophysiological processes in the spinal cord tissues. The primary mechanism of injury is degenerative compression of the cervical spinal cord, detectable by magnetic resonance imaging (MRI), serving as a hallmark for diagnosing DCM. However, the relative resilience of the cervical spinal cord to mechanical compression leads to clinical-radiological discordance, i.e., some individuals may exhibit MRI findings of DCC without the clinical signs and symptoms of myelopathy. This degenerative compression of the cervical spinal cord without clinical signs of myelopathy, potentially serving as a precursor to the development of DCM, remains a somewhat controversial topic. In this review article, we elaborate on and provide commentary on the terminology, epidemiology, natural course, diagnosis, predictive value, risks, and practical management of this condition-all of which are subjects of ongoing debate.
Degenerative spinal cord compression is a frequent pathological condition with increasing prevalence throughout aging. Initial non-myelopathic cervical spinal cord compression (NMDC) might progress over time into potentially irreversible degenerative cervical myelopathy (DCM). While quantitative MRI (qMRI) techniques demonstrated the ability to depict intrinsic tissue properties, longitudinal in-vivo biomarkers to identify NMDC patients who will eventually develop DCM are still missing. Thus, we aim to review the ability of qMRI techniques (such as diffusion MRI, diffusion tensor imaging (DTI), magnetization transfer (MT) imaging, and magnetic resonance spectroscopy (1H-MRS)) to serve as prognostic markers in NMDC. While DTI in NMDC patients consistently detected lower fractional anisotropy and higher mean diffusivity at compressed levels, caused by demyelination and axonal injury, MT and 1H-MRS, along with advanced and tract-specific diffusion MRI, recently revealed microstructural alterations, also rostrally pointing to Wallerian degeneration. Recent studies also disclosed a significant relationship between microstructural damage and functional deficits, as assessed by qMRI and electrophysiology, respectively. Thus, tract-specific qMRI, in combination with electrophysiology, critically extends our understanding of the underlying pathophysiology of degenerative spinal cord compression and may provide predictive markers of DCM development for accurate patient management. However, the prognostic value must be validated in longitudinal studies.
BACKGROUND AND PURPOSE: Non-myelopathic degenerative cervical spinal cord compression (NMDC) frequently occurs throughout aging and may progress to potentially irreversible degenerative cervical myelopathy (DCM). Whereas standard clinical magnetic resonance imaging (MRI) and electrophysiological measures assess compression severity and neurological dysfunction, respectively, underlying microstructural deficits still have to be established in NMDC and DCM patients. The study aims to establish tract-specific diffusion MRI markers of electrophysiological deficits to predict the progression of asymptomatic NMDC to symptomatic DCM. METHODS: High-resolution 3 T diffusion MRI was acquired for 103 NMDC and 21 DCM patients compared to 60 healthy controls to reveal diffusion alterations and relationships between tract-specific diffusion metrics and corresponding electrophysiological measures and compression severity. Relationship between the degree of DCM disability, assessed by the modified Japanese Orthopaedic Association scale, and tract-specific microstructural changes in DCM patients was also explored. RESULTS: The study identified diffusion-derived abnormalities in the gray matter, dorsal and lateral tracts congruent with trans-synaptic degeneration and demyelination in chronic degenerative spinal cord compression with more profound alterations in DCM than NMDC. Diffusion metrics were affected in the C3-6 area as well as above the compression level at C3 with more profound rostral deficits in DCM than NMDC. Alterations in lateral motor and dorsal sensory tracts correlated with motor and sensory evoked potentials, respectively, whereas electromyography outcomes corresponded with gray matter microstructure. DCM disability corresponded with microstructure alteration in lateral columns. CONCLUSIONS: Outcomes imply the necessity of high-resolution tract-specific diffusion MRI for monitoring degenerative spinal pathology in longitudinal studies.
- Keywords
- diffusion magnetic resonance imaging, diffusion tensor imaging, spinal cord compression,
- MeSH
- Diffusion Magnetic Resonance Imaging MeSH
- Spinal Cord Compression * diagnostic imaging MeSH
- Cervical Vertebrae diagnostic imaging MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Spinal Cord diagnostic imaging MeSH
- Spinal Cord Diseases * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
OBJECTIVES: To update a previously established list of predictors for neurological cervical cord dysfunction in nonmyelopathic degenerative cervical cord compression (NMDCCC). MATERIAL AND METHODS: A prospective observational follow-up study was performed in a cohort of 112 consecutive NMDCCC subjects (55 women and 57 men; median age 59 years, range 40-79 years), either asymptomatic (40 subjects) or presenting with cervical radiculopathy or cervical pain (72 subjects), who had completed a follow-up of at least 2 years (median duration 3 years). Development of clinical signs of degenerative cervical myelopathy (DCM) as the main outcome was monitored and correlated with a large number of demographic, clinical, electrophysiological, and MRI parameters including diffusion tensor imaging characteristics (DTI) established at entry. RESULTS: Clinical evidence of the first signs and symptoms of DCM were found in 15 patients (13.4%). Development of DCM was associated with several parameters, including the clinical (radiculopathy, prolonged gait and run-time), electrophysiological (SEP, MEP and EMG signs of cervical cord dysfunction), and MRI (anteroposterior diameter of the cervical cord and cervical canal, cross-sectional area, compression ratio, type of compression, T2 hyperintensity). DTI parameters showed no significant predictive power. Multivariate analysis showed that radiculopathy, cross-sectional area (CSA) ≤ 70.1 mm2, and compression ratio (CR) ≤ 0.4 were the only independent significant predictors for progression into symptomatic myelopathy. CONCLUSIONS: In addition to previously described independent predictors of DCM development (radiculopathy and electrophysiological dysfunction of cervical cord), MRI parameters, namely CSA and CR, should also be considered as significant predictors for development of DCM.
- Keywords
- cervical radiculopathy, degenerative cervical myelopathy, magnetic resonance imaging, nonmyelopathic degenerative cervical cord compression, predictive model,
- MeSH
- Adult MeSH
- Physical Examination MeSH
- Spinal Cord Compression diagnosis diagnostic imaging physiopathology MeSH
- Cervical Vertebrae diagnostic imaging physiopathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Follow-Up Studies MeSH
- Spinal Cord Diseases diagnosis diagnostic imaging physiopathology MeSH
- Disease Progression MeSH
- Prospective Studies MeSH
- Aged MeSH
- Diffusion Tensor Imaging MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Spondylotic cervical cord compression detected by imaging methods is a prerequisite for the clinical diagnosis of spondylotic cervical myelopathy (SCM). Little is known about the spontaneous course and prognosis of clinically "silent" presymptomatic spondylotic cervical cord compression (P-SCCC). The aim of the present study was to update a previously published model predictive for the development of clinically symptomatic SCM, and to assess the early and late risks of this event in a larger cohort of P-SCCC subjects. A group of 199 patients (94 women, 105 men, median age 51 years) with magnetic resonance signs of spondylotic cervical cord compression, but without clear clinical signs of myelopathy, was followed prospectively for at least 2 years (range 2-12 years). Various demographic, clinical, imaging, and electrophysiological parameters were correlated with the time for the development of symptomatic SCM. Clinical evidence of the first signs and symptoms of SCM within the follow-up period was found in 45 patients (22.6%). The 25th percentile time to clinically manifested myelopathy was 48.4 months, and symptomatic SCM developed within 12 months in 16 patients (35.5%). The presence of symptomatic cervical radiculopathy and electrophysiological abnormalities of cervical cord dysfunction detected by somatosensory or motor-evoked potentials were associated with time-to-SCM development and early development (< or =12 months) of SCM, while MRI hyperintensity predicted later (>12 months) progression to symptomatic SCM. The multivariate predictive model based on these variables correctly predicted early progression into SCM in 81.4% of the cases. In conclusion, electrophysiological abnormalities of cervical cord dysfunction together with clinical signs of cervical radiculopathy and MRI hyperintensity are useful predictors of early progression into symptomatic SCM in patients with P-SCCC. Electrophysiological evaluation of cervical cord dysfunction in patients with cervical radiculopathy or back pain is valuable. Meticulous follow-up is justified in high-risk P-SCCC cases.
- MeSH
- Adult MeSH
- Electrodiagnosis methods MeSH
- Evoked Potentials physiology MeSH
- Cohort Studies MeSH
- Spinal Cord Compression diagnosis physiopathology MeSH
- Cervical Vertebrae pathology physiopathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Spinal Cord physiopathology MeSH
- Models, Neurological * MeSH
- Neural Pathways physiopathology MeSH
- Spinal Osteophytosis diagnosis physiopathology MeSH
- Predictive Value of Tests MeSH
- Prognosis MeSH
- Disease Progression MeSH
- Prospective Studies MeSH
- Radiculopathy diagnosis physiopathology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH