Nejvíce citovaný článek - PubMed ID 15830803
Entomopathogenic nematodes of the genera Steinernema and Heterorhabditis, along with their bacterial symbionts from the genera Xenorhabdus and Photorhabdus, respectively, are important biological control agents against agricultural pests. Rapid progress in the development of genomic tools has catalyzed a transformation of the systematics of these organisms, reshaping our understanding of their phylogenetic and cophlylogenetic relationships. In this review, we discuss the major historical events in the taxonomy and systematics of this group of organisms, highlighting the latest advancements in these fields. Additionally, we synthesize information on nematode-bacteria associations and assess the existing evidence regarding their cophylogenetic relationships.
- Klíčová slova
- Beneficial microorganisms, Biological control agents, Entomopathogens, Phylogeny, Systematics, Taxonomy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Three bacterial strains, XENO-2T, XENO-7T, and XENO-10T, isolated from Steinernema entomopathogenic nematodes, were found to represent novel Xenorhabdus species. In this study, we describe these new species by whole-genome and whole-proteome phylogenomic reconstructions, by calculating sequence identity scores using core genome sequences, and by phenotypic characterization. Phylogenomic reconstructions using ribosomal and house-keeping genes, and whole-genome and whole-proteome sequences show that XENO-2T and XENO-10T are closely related to Xenorhabdus japonica DSM 16522T and that XENO-7T is closely related to Xenorhabdus bovienii subsp. africana XENO-1T and to X. bovienii subsp. bovienii T228T. The dDDH values between XENO-2T and XENO-10T and between XENO-2T and X. japonica DSM 16522T are 56.4 and 51.8%, respectively. The dDDH value between XENO-10T and X. japonica DSM 16522T is 53.4%. The dDDH values between XENO-7T and X. bovienii subsp. africana XENO-1T and between XENO-7T and X. bovienii subsp. bovienii T228T are 63.6 and 69.4%, respectively. These dDDH values are below the 70% divergence threshold for prokaryotic species delineation. The newly described species are highly pathogenic to G. mellonella larvae, grow at pH between 5 and 9 (optimum 5-7), at salt concentrations of 1-3% (optimum 1-2%), and temperatures between 20 and 37 °C (optimum 28-30 °C). Biochemical tests such as lysine decarboxylase, ornithine decarboxylase, urease, gelatinase, citrate utilization, indole and acetoin production, and cytochrome oxidase tests allow to differentiate the novel species from their more closely related species. Considering these genetic and phenotypic divergencies, we propose the following new species: Xenorhabdus aichiensis sp. nov. with XENO-7T (= CCM 9233T = CCOS 2024T) as the type strain, Xenorhabdus anantnagensis sp. nov., with XENO-2T (= CCM 9237T = CCOS 2023T) as the type strain, and Xenorhabdus yunnanensis sp. nov., with XENO-10T (= CCM 9322T = CCOS 2071T) as the type strain. Our study contributes to a better understanding of the biodiversity and phylogenetic relationships of entomopathogenic bacteria associated with insect parasitic nematodes.
- MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- mastné kyseliny MeSH
- proteom genetika MeSH
- Rhabditida * genetika mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- symbióza MeSH
- techniky typizace bakterií MeSH
- Xenorhabdus * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
- mastné kyseliny MeSH
- proteom MeSH
- RNA ribozomální 16S MeSH