Nejvíce citovaný článek - PubMed ID 16341895
Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment
After abandonment of agricultural fields, some grassland plant species colonize these sites with a frequency equivalent to dry grasslands (generalists) while others are missing or underrepresented in abandoned fields (specialists). We aimed to understand the inability of specialists to spread on abandoned fields by exploring whether performance of generalists and specialists depended on soil abiotic and/or biotic legacy. We performed a greenhouse experiment with 12 species, six specialists and six generalists. The plants were grown in sterile soil from dry grassland or abandoned field inoculated with microbial communities from one or the other site. Plant growth, abundance of mycorrhizal structures and plant response to inoculation were evaluated. We focused on arbuscular mycorrhizal fungi (AMF), one of the most important parts of soil communities affecting plant performance. The abandoned field soil negatively affected plant growth, but positively affected plant response to inoculation. The AMF community from both sites differed in infectivity and taxa frequencies. The lower AMF taxa frequency in the dry grassland soil suggested a lack of functional complementarity. Despite the fact that dry grassland AMF produced more arbuscules, the dry grassland inoculum did not improve phosphorus nutrition of specialists contrary to the abandoned field inoculum. Inoculum origin did not affect phosphorus nutrition of generalists. The lower effectiveness of the dry grassland microbial community toward plant performance excludes its inoculation in the abandoned field soil as a solution to allow settlement of specialists. Still, the distinct response of specialists and generalists to inoculation suggested that they differ in AMF responsiveness.
- Klíčová slova
- Fungal structures, Mycorrhizal response, Native AMF, Soil biota, Soil legacy,
- MeSH
- houby MeSH
- kořeny rostlin MeSH
- mikrobiota * MeSH
- mykorhiza * MeSH
- pastviny MeSH
- půda MeSH
- půdní mikrobiologie MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda MeSH
Soil organic matter is known to influence arbuscular mycorrhizal (AM) fungi, but limited information is available on the chemical components in the organic matter causing these effects. We studied the influence of decomposing organic matter (pure cellulose and alfalfa shoot and root material) on AM fungi after 30, 100, and 300 days of decomposition in nonsterile soil with and without addition of mineral N and P. Decomposing organic matter affected maize root length colonized by the AM fungus Glomus claroideum in a similar manner as other plant growth parameters. Colonized root length was slightly increased by both nitrogen and phosphorus application and plant materials, but not by application of cellulose. In vitro hyphal growth of Glomus intraradices was increased by soil extracts from the treatments with all types of organic materials independently of mineral N and P application. Pyrolysis of soil samples from the different decomposition treatments revealed in total 266 recognizable organic compounds and in vitro hyphal growth of G. intraradices in soil extract positively correlated with 33 of these compounds. The strongest correlation was found with 3,4,5-trimethoxybenzoic acid methyl ester. This compound is a typical product of pyrolysis of phenolic compounds produced by angiosperm woody plants, but in our experiment, it was produced mainly from cellulose by some components of the soil microflora. In conclusion, our results indicate that mycelia of AM fungi are influenced by organic matter decomposition both via compounds released during the decomposition process and also by secondary metabolites produced by microorganisms involved in organic matter decomposition.
- MeSH
- časové faktory MeSH
- celulosa metabolismus MeSH
- Glomeromycota růst a vývoj MeSH
- huminové látky mikrobiologie MeSH
- hyfy růst a vývoj MeSH
- kořeny rostlin mikrobiologie MeSH
- kukuřice setá růst a vývoj mikrobiologie MeSH
- Medicago sativa metabolismus MeSH
- mykorhiza růst a vývoj MeSH
- půda * analýza MeSH
- půdní mikrobiologie * MeSH
- výhonky rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- celulosa MeSH
- huminové látky MeSH
- půda * MeSH