Most cited article - PubMed ID 16363869
Synthesis and characterization of new calcium phenylphosphonates and 4-carboxyphenylphosphonates
Layered nanoparticles with surface charge are explored as rheological modifiers for extrudable materials, utilizing their ability to induce electrostatic repulsion and create a house-of-cards structure. These nanoparticles provide mechanical support to the polymer matrix, resulting in increased viscosity and storage modulus. Moreover, their advantageous aspect ratio allows for shear-induced orientation and decreased viscosity during flow. In this work, we present a synthesis and liquid-based exfoliation procedure of phenylphosphonate-phosphate particles with enhanced ability to be intercalated by hydrophilic polymers. These layered nanoparticles are then tested as rheological modifiers of sodium alginate. The effective rheological modification is proved as the viscosity increases from 101 up to 103 Pa·s in steady state. Also, shear-thinning behavior is observed. The resulting nanocomposite hydrogels show potential as an extrudable bioink for 3D printing in tissue engineering and other biomedical applications, with good shape fidelity, nontoxicity, and satisfactory cell viability confirmed through encapsulation and printing of mouse fibroblasts.
- MeSH
- Printing, Three-Dimensional MeSH
- Alginates chemistry MeSH
- Bioprinting * methods MeSH
- Hydrogels pharmacology chemistry MeSH
- Mice MeSH
- Organophosphonates * MeSH
- Polymers MeSH
- Rheology MeSH
- Tissue Engineering methods MeSH
- Tissue Scaffolds chemistry MeSH
- Calcium MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Alginates MeSH
- Hydrogels MeSH
- Organophosphonates * MeSH
- Polymers MeSH
- Calcium MeSH
The use of nanosheets of layered calcium phenylphosphonate as a filler in a polymeric matrix was investigated. Layered calcium phenylphosphonate (CaPhP), with chemical formula CaC6H5PO3∙2H2O, is a hybrid organic-inorganic material that exhibits a hydrophobic character due to the presence of phenyl groups on the surface of the layers. In this paper, various CaPhP synthesis methods were studied with the aim of obtaining a product most suitable for its subsequent exfoliation. The liquid-based approach was used for the exfoliation. It was found that the most promising technique for the exfoliation of CaPhP in an amount sufficient for incorporation into polymers involved using propan-2-ol with a strong shear force generated in a high-shear disperser. The filler was tested both in its unexfoliated and exfoliated forms for the preparation of polymer composites, for which a low molecular weight epoxy resin based on bisphenol A was used as a polymer matrix. The prepared samples were characterized by powder X-ray diffraction, atomic force microscopy, optical and scanning electron microscopy, and dynamic mechanical analysis. Flammability and gas permeation tests were also performed. The addition of the nanofiller was found to influence the composite properties - the exfoliated particles were found to have a higher impact on the properties of the prepared composites than the unexfoliated particles of the same loading.
- Keywords
- exfoliation, layered phenylphosphonate, nanofiller, nanomaterial, polymer filler,
- Publication type
- Journal Article MeSH
Strontium phenylphosphonate intercalates with 1,2-diols (from 1,2-ethanediol to 1,2-hexanediol) were synthesized and characterized by X-ray diffraction, thermogravimetry, chemical analysis, and molecular simulation methods. Prepared samples exhibit a very good stability at ambient conditions. Structural arrangement calculated by simulation methods suggested formation of cavities surrounded by six benzene rings. Each cavity contained one molecule of diol and one molecule of water for the 1,2-ethanediol to 1,2-butanediol intercalates. In the case of 1,2-pentanediol two types of cavities alternated: one with diol molecules and another one with two water molecules. In the 1,2-hexanediol intercalate the benzene rings created two types of cavities containing one or two diol molecules, respectively, and this conformational variability led to a more disordered arrangement with respect to the models with shorter alkyl chains. Coordination of the oxygen atoms of the diols to the strontium atoms of the host follows the same pattern for all 1,2-diol intercalates except the 1,2-hexanediol intercalate, where these oxygen atoms can be mutually exchanged at their positions. The calculated basal spacings and structural models are in good agreement with experimental basal spacings obtained from X-ray powder diffraction and with other experimental results.
- Keywords
- 1,2 diols, Intercalation, Molecular simulations, Strontium phenylphosphonate,
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH