3D bioprinting is revolutionizing tissue engineering and regenerative medicine by enabling the precise fabrication of biologically functional constructs. At its core, the success of 3D bioprinting hinges on the development of bioinks, hydrogel-based materials that support cellular viability, proliferation, and differentiation. However, conventional bioinks face limitations in mechanical strength, biological activity, and customization. Recent advancements in genetic engineering have addressed these challenges by enhancing the properties of bioinks through genetic modifications. These innovations allow the integration of stimuli-responsive elements, bioactive molecules, and extracellular matrix (ECM) components, significantly improving the mechanical integrity, biocompatibility, and functional adaptability of bioinks. This review explores the state-of-the-art genetic approaches to bioink development, emphasizing microbial engineering, genetic functionalization, and the encapsulation of growth factors. It highlights the transformative potential of genetically modified bioinks in various applications, including bone and cartilage regeneration, cardiac and liver tissue engineering, neural tissue reconstruction, and vascularization. While these advances hold promise for personalized and adaptive therapeutic solutions, challenges in scalability, reproducibility, and integration with multi-material systems persist. By bridging genetics and bioprinting, this interdisciplinary field paves the way for sophisticated constructs and innovative therapies in tissue engineering and regenerative medicine.
- Keywords
- 3D bioprinting, Bioink, Gel, Genetics, Tissue engineering,
- MeSH
- Printing, Three-Dimensional * MeSH
- Biocompatible Materials * chemistry MeSH
- Bioprinting * methods MeSH
- Extracellular Matrix chemistry MeSH
- Hydrogels chemistry MeSH
- Ink * MeSH
- Humans MeSH
- Regenerative Medicine MeSH
- Tissue Engineering * methods MeSH
- Tissue Scaffolds MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Biocompatible Materials * MeSH
- Hydrogels MeSH
Three-dimensional printing (3DP) has gained popularity among scientists and researchers in every field due to its potential to drastically reduce energy costs for the production of customized products by utilizing less energy-intensive machines as well as minimizing material waste. The 3D printing technology is an additive manufacturing approach that uses material layer-by-layer fabrication to produce the digitally specified 3D model. The use of 3D printing technology in the pharmaceutical sector has the potential to revolutionize research and development by providing a quick and easy means to manufacture personalized one-off batches, each with unique dosages, distinct substances, shapes, and sizes, as well as variable release rates. This overview addresses the concept of 3D printing, its evolution, and its operation, as well as the most popular types of 3D printing processes utilized in the health care industry. It also discusses the application of these cutting-edge technologies to the pharmaceutical industry, advancements in various medical fields and medical equipment, 3D bioprinting, the most recent initiatives to combat COVID-19, regulatory frameworks, and the major challenges that this technology currently faces. In addition, we attempt to provide some futuristic approaches to 3DP applications.
- Keywords
- 3D bioprinting., 3D printed equipment, 3D printing techniques, COVID-19 treatment, DOP, EHD, EMP, SLS, drug delivery system, inkjet, personalized medicines, vat photopolymerization,
- MeSH
- Printing, Three-Dimensional * trends MeSH
- Bioprinting MeSH
- COVID-19 MeSH
- Drug Industry MeSH
- Humans MeSH
- Delivery of Health Care * MeSH
- SARS-CoV-2 MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The development of bioink-based 3D-printed scaffolds has revolutionized bone tissue engineering (BTE) by enabling patient-specific and biomimetic constructs for bone regeneration. This review focuses on the biocompatibility and mechanical properties essential for scaffold performance, highlighting advancements in bioink formulations, material combinations, and printing techniques. The key biomaterials, including natural polymers (gelatin, collagen, alginate), synthetic polymers (polycaprolactone, polyethylene glycol), and bioactive ceramics (hydroxyapatite, calcium phosphate), are discussed concerning their osteoconductivity, printability, and structural integrity. Despite significant progress, challenges remain in achieving optimal mechanical strength, degradation rates, and cellular interactions. The review explores emerging strategies such as gene-activated bioinks, nanocomposite reinforcements, and crosslinking techniques to enhance scaffold durability and bioactivity. By synthesizing recent developments, this work provides insights into future directions for bioink-based scaffolds, paving the way for more effective and personalized bone regenerative therapies.
- MeSH
- Printing, Three-Dimensional * MeSH
- Biocompatible Materials * chemistry MeSH
- Bioprinting MeSH
- Ink MeSH
- Humans MeSH
- Bone Regeneration * MeSH
- Tissue Engineering methods MeSH
- Tissue Scaffolds * chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Biocompatible Materials * MeSH
Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.
- Keywords
- 3D/4D printing, Biosensors, Digital light processing (DLP), Stereolithography (SLD), Targeted drug delivery, Tissue engineering, cancer therapy,
- MeSH
- Printing, Three-Dimensional MeSH
- Bioprinting methods MeSH
- Cell Culture Techniques MeSH
- Hydrogels * chemistry MeSH
- Drug Delivery Systems MeSH
- Humans MeSH
- Cell Culture Techniques, Three Dimensional methods MeSH
- Tissue Engineering * methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Hydrogels * MeSH
Bioinks play a crucial role in tissue engineering, influencing mechanical and chemical properties of the printed scaffold as well as the behavior of encapsulated cells. Recently, there has been a shift from animal origin materials to their synthetic alternatives. In this context, we present here bioinks based on fully synthetic and biodegradable poly(α,L-amino acids) (PolyAA) as an alternative to animal-based gelatin methacrylate (Gel-Ma) bioinks. Additionally, we first reported the possibility of the visible light photoinitiated incorporation of the bifunctional cell adhesive RGD peptide into the PolyAA hydrogel matrix. The obtained hydrogels are shown to be cytocompatible, and their mechanical properties closely resemble those of gelatin methacrylate-based scaffolds. Moreover, combining the unique properties of PolyAA-based bioinks, the photocrosslinking strategy, and the use of droplet-based printing allows the printing of constructs with high shape fidelity and structural integrity from low-viscosity bioinks without using any sacrificial components. Overall, presented PolyAA-based materials are a promising and versatile toolbox that extends the range of bioinks for droplet bioprinting.
- Keywords
- adhesion-promoting peptide, bioprinting, hydrogels, lung fibroblasts, mesenchymal stem cells, photogelation,
- MeSH
- Printing, Three-Dimensional MeSH
- Amino Acids * chemistry MeSH
- Biocompatible Materials * chemistry MeSH
- Bioprinting methods MeSH
- Hydrogels * chemistry MeSH
- Ink MeSH
- Humans MeSH
- Methacrylates chemistry MeSH
- Mice MeSH
- Oligopeptides chemistry MeSH
- Light * MeSH
- Materials Testing MeSH
- Tissue Engineering * methods MeSH
- Tissue Scaffolds * chemistry MeSH
- Viscosity MeSH
- Gelatin * chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Amino Acids * MeSH
- arginyl-glycyl-aspartic acid MeSH Browser
- Biocompatible Materials * MeSH
- Hydrogels * MeSH
- Methacrylates MeSH
- Oligopeptides MeSH
- Gelatin * MeSH
Layered nanoparticles with surface charge are explored as rheological modifiers for extrudable materials, utilizing their ability to induce electrostatic repulsion and create a house-of-cards structure. These nanoparticles provide mechanical support to the polymer matrix, resulting in increased viscosity and storage modulus. Moreover, their advantageous aspect ratio allows for shear-induced orientation and decreased viscosity during flow. In this work, we present a synthesis and liquid-based exfoliation procedure of phenylphosphonate-phosphate particles with enhanced ability to be intercalated by hydrophilic polymers. These layered nanoparticles are then tested as rheological modifiers of sodium alginate. The effective rheological modification is proved as the viscosity increases from 101 up to 103 Pa·s in steady state. Also, shear-thinning behavior is observed. The resulting nanocomposite hydrogels show potential as an extrudable bioink for 3D printing in tissue engineering and other biomedical applications, with good shape fidelity, nontoxicity, and satisfactory cell viability confirmed through encapsulation and printing of mouse fibroblasts.
- MeSH
- Printing, Three-Dimensional MeSH
- Alginates chemistry MeSH
- Bioprinting * methods MeSH
- Hydrogels pharmacology chemistry MeSH
- Mice MeSH
- Organophosphonates * MeSH
- Polymers MeSH
- Rheology MeSH
- Tissue Engineering methods MeSH
- Tissue Scaffolds chemistry MeSH
- Calcium MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Alginates MeSH
- Hydrogels MeSH
- Organophosphonates * MeSH
- Polymers MeSH
- Calcium MeSH
Cardiovascular diseases are the leading cause of mortality worldwide. Given the limited endogenous regenerative capabilities of cardiac tissue, patient-specific anatomy, challenges in treatment options, and shortage of donor tissues for transplantation, there is an urgent need for novel approaches in cardiac tissue repair. 3D bioprinting is a technology based on additive manufacturing which allows for the design of precisely controlled and spatially organized structures, which could possibly lead to solutions in cardiac tissue repair. In this review, we describe the basic morphological and physiological specifics of the heart and cardiac tissues and introduce the readers to the fundamental principles underlying 3D printing technology and some of the materials/approaches which have been used to date for cardiac repair. By summarizing recent progress in 3D printing of cardiac tissue and valves with respect to the key features of cardiovascular tissue (such as contractility, conductivity, and vascularization), we highlight how 3D printing can facilitate surgical planning and provide custom-fit implants and properties that match those from the native heart. Finally, we also discuss the suitability of this technology in the design and fabrication of custom-made devices intended for the maturation of the cardiac tissue, a process that has been shown to increase the viability of implants. Altogether this review shows that 3D printing and bioprinting are versatile and highly modulative technologies with wide applications in cardiac regeneration and beyond.
- Keywords
- 3D printing, Bioreactor, Cardiac tissue, Maturation, Valve,
- MeSH
- Printing, Three-Dimensional MeSH
- Bioprinting * methods MeSH
- Humans MeSH
- Heart MeSH
- Tissue Engineering * methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
PURPOSE OF REVIEW: This review describes the latest advances in cell therapy, biomaterials and 3D bioprinting for the treatment of cardiovascular disease. RECENT FINDINGS: Cell therapies offer the greatest benefit for patients suffering from chronic ischemic and nonischemic cardiomyopathy. Rather than replacing lost cardiomyocytes, the effects of most cell therapies are mediated by paracrine signalling, mainly through the induction of angiogenesis and immunomodulation. Cell preconditioning, or genetic modifications are being studied to improve the outcomes. Biomaterials offer stand-alone benefits such as bioactive cues for cell survival, proliferation and differentiation, induction of vascularization or prevention of further cardiomyocyte death. They also provide mechanical support or electroconductivity, and can be used to deliver cells, growth factors or drugs to the injured site. Apart from classical biomaterial manufacturing techniques, 3D bioprinting offers greater spatial control over biomaterial deposition and higher resolution of the details, including hollow vessel-like structures. SUMMARY: Cell therapy induces mainly angiogenesis and immunomodulation. The ability to induce direct cardiomyocyte regeneration to replace the lost cardiomyocytes is, however, still missing until embryonic or induced pluripotent stem cell use becomes available. Cell therapy would benefit from combinatorial use with biomaterials, as these can prolong cell retention and survival, offer additional mechanical support and provide inherent bioactive cues. Biomaterials can also be used to deliver growth factors, drugs, and other molecules. 3D bioprinting is a high-resolution technique that has great potential in cardiac therapy.
- MeSH
- Printing, Three-Dimensional * MeSH
- Biocompatible Materials MeSH
- Bioprinting * MeSH
- Myocytes, Cardiac MeSH
- Humans MeSH
- Myocardium MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Biocompatible Materials MeSH
Engineering hierarchical vasculatures is critical for creating implantable functional thick tissues. Current approaches focus on fabricating mesoscale vessels for implantation or hierarchical microvascular in vitro models, but a combined approach is yet to be achieved to create engineered tissue flaps. Here, millimetric vessel-like scaffolds and 3D bioprinted vascularized tissues interconnect, creating fully engineered hierarchical vascular constructs for implantation. Endothelial and support cells spontaneously form microvascular networks in bioprinted tissues using a human collagen bioink. Sacrificial molds are used to create polymeric vessel-like scaffolds and endothelial cells seeded in their lumen form native-like endothelia. Assembling endothelialized scaffolds within vascularizing hydrogels incites the bioprinted vasculature and endothelium to cooperatively create vessels, enabling tissue perfusion through the scaffold lumen. Using a cuffing microsurgery approach, the engineered tissue is directly anastomosed with a rat femoral artery, promoting a rich host vasculature within the implanted tissue. After two weeks in vivo, contrast microcomputer tomography imaging and lectin perfusion of explanted engineered tissues verify the host ingrowth vasculature's functionality. Furthermore, the hierarchical vessel network (VesselNet) supports in vitro functionality of cardiomyocytes. Finally, the proposed approach is expanded to mimic complex structures with native-like millimetric vessels. This work presents a novel strategy aiming to create fully-engineered patient-specific thick tissue flaps.
- Keywords
- 3D bioprinting, ECM bioink, engineered flap, personalized medicine, tissue engineering, vascularization,
- MeSH
- Printing, Three-Dimensional MeSH
- Femoral Artery surgery MeSH
- Biomimetic Materials chemistry MeSH
- Bioprinting methods MeSH
- Endothelial Cells cytology metabolism MeSH
- Hydrogels chemistry MeSH
- Ink MeSH
- Stem Cells cytology metabolism MeSH
- Collagen Type I chemistry genetics metabolism MeSH
- Rats MeSH
- Humans MeSH
- Methacrylates chemistry MeSH
- Polymers chemistry MeSH
- Rats, Sprague-Dawley MeSH
- Prostheses and Implants MeSH
- Tissue Engineering * MeSH
- Tissue Scaffolds chemistry MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Hydrogels MeSH
- Collagen Type I MeSH
- Methacrylates MeSH
- Polymers MeSH
'Bioinks' are important tools for the fabrication of artificial living-tissue constructs that are able to mimic all properties of native tissues via 3D bioprinting technologies. Bioinks are most commonly made by incorporating live cells of interest within a natural or synthetic biocompatible polymeric matrix. In oncology research, the ability to recreate a tumor microenvironment (TME) using by 3D bioprinting constitutes a promising approach for drug development, screening, and in vitro cancer modeling. Here, we review the different types of bioink used for 3D bioprinting, with a focus on its application in cancer management. In addition, we consider the fabrication of bioink using customized materials/cells and their properties in the field of cancer drug discovery.
- MeSH
- Printing, Three-Dimensional * MeSH
- Bioprinting * MeSH
- Humans MeSH
- Neoplasms drug therapy MeSH
- Drug Discovery * MeSH
- Antineoplastic Agents therapeutic use MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Antineoplastic Agents MeSH