Most cited article - PubMed ID 16467985
Duplication, balancing selection and trans-species evolution explain the high levels of polymorphism of the DQA MHC class II gene in voles (Arvicolinae)
BACKGROUND: The mammalian Major Histocompatibility Complex (MHC) is a genetic region containing highly polymorphic genes with immunological functions. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. The MHC class II sub-region contains genes expressed in antigen presenting cells. The antigen binding site is encoded by the second exon of genes encoding antigen presenting molecules. The exon 2 sequences of these MHC genes have evolved under the selective pressure of pathogens. Interspecific differences can be observed in the class II sub-region. The family Equidae includes a variety of domesticated, and free-ranging species inhabiting a range of habitats exposed to different pathogens and represents a model for studying this important part of the immunogenome. While equine MHC class II DRA and DQA loci have received attention, the genetic diversity and effects of selection on DRB and DQB loci have been largely overlooked. This study aimed to provide the first in-depth analysis of the MHC class II DRB and DQB loci in the Equidae family. RESULTS: Three DRB and two DQB genes were identified in the genomes of all equids. The genes DRB2, DRB3 and DQB3 showed high sequence conservation, while polymorphisms were more frequent at DRB1 and DQB1 across all species analyzed. DQB2 was not found in the genome of the Asiatic asses Equus hemionus kulan and E. h. onager. The bioinformatic analysis of non-zero-coverage-bases of DRB and DQB genes in 14 equine individual genomes revealed differences among individual genes. Evidence for recombination was found for DRB1, DRB2, DQB1 and DQB2 genes. Trans-species allele sharing was identified in all genes except DRB1. Site-specific selection analysis predicted genes evolving under positive selection both at DRB and DQB loci. No selected amino acid sites were identified in DQB3. CONCLUSIONS: The organization of the MHC class II sub-region of equids is similar across all species of the family. Genomic sequences, along with phylogenetic trees suggesting effects of selection as well as trans-species polymorphism support the contention that pathogen-driven positive selection has shaped the MHC class II DRB/DQB sub-regions in the Equidae.
- Keywords
- Family Equidae, MHC class II loci, MHC exon 2, Major histocompatibility complex, Positive selection, Selected amino acid sites, Trans-species polymorphism,
- MeSH
- Equidae classification genetics MeSH
- Phylogeny MeSH
- Major Histocompatibility Complex genetics MeSH
- Evolution, Molecular * MeSH
- Polymorphism, Genetic * MeSH
- Recombination, Genetic MeSH
- Selection, Genetic * MeSH
- Genetic Speciation MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The major histocompatibility complex (MHC) plays a central role in the adaptive immune response and is the most polymorphic gene family in vertebrates. Although high-throughput sequencing has increasingly been used for genotyping families of co-amplifying MHC genes, its potential to facilitate early steps in the characterisation of MHC variation in nonmodel organism has not been fully explored. In this study we evaluated the usefulness of de novo transcriptome assembly in characterisation of MHC sequence diversity. We found that although de novo transcriptome assembly of MHC I genes does not reconstruct sequences of individual alleles, it does allow the identification of conserved regions for PCR primer design. Using the newly designed primers, we characterised MHC I sequences in the bank vole. Phylogenetic analysis of the partial MHC I coding sequence (2-4 exons) of the bank vole revealed a lack of orthology to MHC I of other Cricetidae, consistent with the high gene turnover of this region. The diversity of expressed alleles was characterised using ultra-deep sequencing of the third exon that codes for the peptide-binding region of the MHC molecule. High allelic diversity was demonstrated, with 72 alleles found in 29 individuals. Interindividual variation in the number of expressed loci was found, with the number of alleles per individual ranging from 5 to 14. Strong signatures of positive selection were found for 8 amino acid sites, most of which are inferred to bind antigens in human MHC, indicating conservation of structure despite rapid sequence evolution.
- MeSH
- Alleles MeSH
- Arvicolinae genetics MeSH
- DNA Primers MeSH
- Exons MeSH
- Phylogeny MeSH
- Genetic Variation MeSH
- Genotype MeSH
- Genes, MHC Class I * MeSH
- Major Histocompatibility Complex genetics MeSH
- Multigene Family MeSH
- Mice MeSH
- Transcriptome * MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA Primers MeSH
BACKGROUND: In vertebrates, it has been repeatedly demonstrated that genes encoding proteins involved in pathogen-recognition by adaptive immunity (e.g. MHC) are subject to intensive diversifying selection. On the other hand, the role and the type of selection processes shaping the evolution of innate-immunity genes are currently far less clear. In this study we analysed the natural variation and the evolutionary processes acting on two genes involved in the innate-immunity recognition of Microbe-Associated Molecular Patterns (MAMPs). RESULTS: We sequenced genes encoding Toll-like receptor 4 (Tlr4) and 7 (Tlr7), two of the key bacterial- and viral-sensing receptors of innate immunity, across 23 species within the subfamily Murinae. Although we have shown that the phylogeny of both Tlr genes is largely congruent with the phylogeny of rodents based on a comparably sized non-immune sequence dataset, we also identified several potentially important discrepancies. The sequence analyses revealed that major parts of both Tlrs are evolving under strong purifying selection, likely due to functional constraints. Yet, also several signatures of positive selection have been found in both genes, with more intense signal in the bacterial-sensing Tlr4 than in the viral-sensing Tlr7. 92% and 100% of sites evolving under positive selection in Tlr4 and Tlr7, respectively, were located in the extracellular domain. Directly in the Ligand-Binding Region (LBR) of TLR4 we identified two rapidly evolving amino acid residues and one site under positive selection, all three likely involved in species-specific recognition of lipopolysaccharide of gram-negative bacteria. In contrast, all putative sites of LBRTLR7 involved in the detection of viral nucleic acids were highly conserved across rodents. Interspecific differences in the predicted 3D-structure of the LBR of both Tlrs were not related to phylogenetic history, while analyses of protein charges clearly discriminated Rattini and Murini clades. CONCLUSIONS: In consequence of the constraints given by the receptor protein function purifying selection has been a dominant force in evolution of Tlrs. Nevertheless, our results show that episodic diversifying parasite-mediated selection has shaped the present species-specific variability in rodent Tlrs. The intensity of diversifying selection was higher in Tlr4 than in Tlr7, presumably due to structural properties of their ligands.
- MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Evolution, Molecular * MeSH
- Murinae classification genetics immunology MeSH
- Immunity, Innate MeSH
- Protein Structure, Tertiary MeSH
- Toll-Like Receptor 4 chemistry genetics immunology MeSH
- Toll-Like Receptor 7 chemistry genetics immunology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Toll-Like Receptor 4 MeSH
- Toll-Like Receptor 7 MeSH
The mammalian major histocompatibility complex (MHC) is a tightly linked cluster of immune genes, and is often thought of as inherited as a unit. This has led to the hope that studying a single MHC gene will reveal patterns of evolution representative of the MHC as a whole. In this study we analyse a 1000-km transect of MHC variation traversing the European house mouse hybrid zone to compare signals of selection and patterns of diversification at two closely linked MHC class II genes, H-2Aa and H-2Eb. We show that although they are 0.01 cM apart (that is, recombination is expected only once in 10 000 meioses), disparate evolutionary patterns were detected. H-2Aa shows higher allelic polymorphism, faster allelic turnover due to higher mutation rates, stronger positive selection at antigen-binding sites and higher population structuring than H-2Eb. H-2Eb alleles are maintained in the gene pool for longer, including over separation of the subspecies, some H-2Eb alleles are positively and others negatively selected and some of the alleles are not expressed. We conclude that studies on MHC genes in wild-living vertebrates can give substantially different results depending on the MHC gene examined and that the level of polymorphism in a related species is a poor criterion for gene choice.
- MeSH
- Alleles * MeSH
- DNA Primers genetics MeSH
- Phylogeny MeSH
- Genetic Variation * MeSH
- Gene Components MeSH
- Major Histocompatibility Complex genetics MeSH
- Hybridization, Genetic * MeSH
- Models, Genetic MeSH
- Evolution, Molecular * MeSH
- Molecular Sequence Data MeSH
- Mice genetics MeSH
- Genetics, Population MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Sequence Alignment MeSH
- Selection, Genetic * MeSH
- Cluster Analysis MeSH
- Animals MeSH
- Check Tag
- Mice genetics MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- DNA Primers MeSH
The polymorphism of exon 2 of the DAB genes (major histocompatibility complex [MHC] class IIB) was investigated for the first time in the freshwater cyprinid fish species, Squalius cephalus, in the wide range of its distribution in Europe. We identified 111 different MHC class IIB variants in 15 chub populations distributed from Finland to Spain. The sequence analysis showed that many structurally important amino acid sites that were conserved among tetrapods were also conserved in chub. The analysis of recombination indicated that it does not play an important role in producing and maintaining the variation of DAB genes analyzed in the present study. The exon 2 was shown to be subjected to intense positive selection. Phylogenetic analysis and sequence identities suggest the presence of two class IIB loci (DAB1-like and DAB3-like) in chub. Nevertheless, the presence of three DAB3-like sequence variants in several individuals indicates the duplication of the DAB3 gene. A contrasting selection pattern was found in DAB1-like and DAB3-like genes, which suggests the potential functional differences between these genes. Some DAB sequence variants were shared among the populations of different mtDNA lineages. The phylogenetic analyses did not confirm any biogeographical pattern of the genetic structure of MHC IIB in chub, which is in line with balancing selection and trans-species polymorphism in MHC genes. Nevertheless, cluster analysis based on the presence/absence of DAB sequence variants in the populations showed the phylogeophraphical pattern corresponding to the mtDNA lineages, which indicates that neutral selection can partially explain the MHC IIB evolution in chub.
- MeSH
- Cyprinidae genetics immunology MeSH
- Exons MeSH
- Genes, MHC Class II * MeSH
- Evolution, Molecular * MeSH
- Polymorphism, Genetic MeSH
- Selection, Genetic MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
Heterogeneities in immune responsiveness may affect key epidemiological parameters and the dynamics of pathogens. The roles of immunogenetics in these variations remain poorly explored. We analysed the influence of Major histocompatibility complex (Mhc) genes and epigamic traits on the response to phytohaemagglutinin in males from cyclic populations of the montane water vole (Arvicola scherman). Besides, we tested the relevance of lateral scent glands as honest signals of male quality. Our results did not corroborate neither the hypotheses of genome-wide heterozygosity-fitness correlation nor the Mhc heterozygote advantage. We found a negative relationship between Mhc hetetozygosity and response to phytohaemagglutinin, mediated by a specific Mhc homozygous genotype. Our results therefore support the hypothesis of the Arte-Dqa-05 homozygous genotype being a 'good' Mhc variant in terms of immunogenetic quality. The development of the scent glands seems to be an honest signal for mate choice as it is negatively correlated with helminth load. The 'good gene' hypothesis was not validated as Arte-Dqa-05 homozygous males did not exhibit larger glands. Besides, the negative relationship observed between the size of these glands and the response to phytohaemagglutinin, mainly for Mhc homozygotes, corroborates the immunocompetence handicap hypothesis. The Mhc variants associated with larger glands remain yet to be determined.
- Keywords
- Dqa and Drb, Mhc class II genes, abundance cycles, immunocompetence handicap, parasite-mediated balancing selection, sexual selection,
- Publication type
- Journal Article MeSH
The major histocompatibility complex genes coding for antigen binding and presenting molecules are the most polymorphic genes in the vertebrate genome. We studied the DRA and DQA gene polymorphism of the family Equidae. In addition to 11 previously reported DRA and 24 DQA alleles, six new DRA sequences and 13 new DQA alleles were identified in the genus Equus. Phylogenetic analysis of both DRA and DQA sequences provided evidence for trans-species polymorphism in the family Equidae. The phylogenetic trees differed from species relationships defined by standard taxonomy of Equidae and from trees based on mitochondrial or neutral gene sequence data. Analysis of selection showed differences between the less variable DRA and more variable DQA genes. DRA alleles were more often shared by more species. The DQA sequences analysed showed strong amongst-species positive selection; the selected amino acid positions mostly corresponded to selected positions in rodent and human DQA genes.
- MeSH
- Alleles MeSH
- DNA Primers genetics MeSH
- DNA genetics MeSH
- Species Specificity MeSH
- Equidae classification genetics immunology MeSH
- Phylogeny MeSH
- Genetic Variation MeSH
- Major Histocompatibility Complex * MeSH
- Immunogenetic Phenomena MeSH
- Horses genetics immunology MeSH
- Evolution, Molecular MeSH
- Molecular Sequence Data MeSH
- Polymorphism, Genetic * MeSH
- Polymorphism, Single-Stranded Conformational MeSH
- Base Sequence MeSH
- Sequence Homology, Nucleic Acid MeSH
- Selection, Genetic * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- DNA Primers MeSH
- DNA MeSH