Nejvíce citovaný článek - PubMed ID 16668886
Immunodetection and Identification of N-(o-Hydroxybenzylamino)Purine as a Naturally Occurring Cytokinin in Populus x canadensis Moench cv Robusta Leaves
Five poplar CHASE-containing histidine kinase receptors bind cytokinins and display kinase activities. Both endogenous isoprenoid and aromatic cytokinins bind to the receptors in live cell assays. Cytokinins are phytohormones that play key roles in various developmental processes in plants. The poplar species Populus × canadensis, cv. Robusta, is the first organism found to contain aromatic cytokinins. Here, we report the functional characterization of five CHASE-containing histidine kinases from P. × canadensis: PcHK2, PcHK3a, PcHK3b, PcHK4a and PcHK4b. A qPCR analysis revealed high transcript levels of all PcHKs other than PcHK4b across multiple poplar organs. The ligand specificity was determined using a live cell Escherichia coli assay and we provide evidence based on UHPLC-MS/MS data that ribosides can be true ligands. PcHK2 exhibited higher sensitivity to iP-type cytokinins than the other receptors, while PcHK3a and PcHK3b bound these cytokinins much more weakly, because they possess two isoleucine residues that clash with the cytokinin base and destabilize its binding. All receptors display kinase activity but their activation ratios in the presence/absence of cytokinin differ significantly. PcHK4a displays over 400-fold higher kinase activity in the presence of cytokinin, suggesting involvement in strong responses to changes in cytokinin levels. trans-Zeatin was both the most abundant cytokinin in poplar and that with the highest variation in abundance, which is consistent with its strong binding to all five HKs and activation of cytokinin signaling via A-type response regulators. The aromatic cytokinins' biological significance remains unclear, their levels vary diurnally, seasonally, and annually. PcHK3 and PcHK4 display the strongest binding at pH 7.5 and 5.5, respectively, in line with their putative membrane localization in the endoplasmic reticulum and plasma membrane.
- Klíčová slova
- Aromatic cytokinin, Histidine kinase, Hormone, Isoprenoid cytokinin, Poplar, Topolin,
- MeSH
- cytokininy metabolismus MeSH
- histidinkinasa metabolismus MeSH
- Populus metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- terpeny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokininy MeSH
- histidinkinasa MeSH
- terpeny MeSH
Isoprenoid and aromatic cytokinins occur in poplar as free compounds and constituents of tRNA, poplar isopentenyltransferases are involved in the production of isoprenoid cytokinins, while biosynthesis of their aromatic counterparts remains unsolved. Cytokinins are phytohormones with a fundamental role in the regulation of plant growth and development. They occur naturally either as isoprenoid or aromatic derivatives, but the latter are quite rare and less studied. Here, the spatial expression of all nine isopentenyl transferase genes of Populus × canadensis cv. Robusta (PcIPTs) as analyzed by RT-qPCR revealed a tissue preference and strong differences in expression levels for the different adenylate and tRNA PcIPTs. Together with their phylogeny, this result suggests a functional diversification for the different PcIPT proteins. Additionally, the majority of PcIPT genes were cloned and expressed in Arabidopsis thaliana under an inducible promoter. The cytokinin levels measured in the Arabidopsis-overexpressing lines as well as their phenotype indicate that the studied adenylate and tRNA PcIPT proteins are functional in vivo and thus will contribute to the cytokinin pool in poplar. We screened the cytokinin content in leaves of 12 Populus species by ultra-high performance-tandem mass spectrometry (UHPLC-MS/MS) and discovered that the capacity to produce not only isoprenoid, but also aromatic cytokinins is widespread amongst the Populus accessions studied. Important for future studies is that the levels of aromatic cytokinins transiently increase after daybreak and are much higher in older plants.
- Klíčová slova
- Cytokinin, Expression, Isopentenyltransferase, Poplar, Topolin, tRNA,
- MeSH
- alkyltransferasy a aryltransferasy genetika metabolismus MeSH
- Arabidopsis genetika metabolismus MeSH
- cytokininy biosyntéza MeSH
- fylogeneze MeSH
- geneticky modifikované rostliny MeSH
- listy rostlin genetika metabolismus MeSH
- Populus genetika metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenylate isopentenyltransferase MeSH Prohlížeč
- alkyltransferasy a aryltransferasy MeSH
- cytokininy MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH