Most cited article - PubMed ID 17024363
Viability staining and animal infectivity of Cryptosporidium andersoni oocysts after long-term storage
Cryptosporidium spp., Enterocytozoon bieneusi and Encephalitozoon spp. are the most common protistan parasites of vertebrates. The results show that pigeon populations in Central Europe are parasitised by different species of Cryptosporidium and genotypes of microsporidia of the genera Enterocytozoon and Encephalitozoon. A total of 634 and 306 faecal samples of captive and feral pigeons (Columba livia f. domestica) from 44 locations in the Czech Republic, Slovakia and Poland were analysed for the presence of parasites by microscopy and PCR/sequence analysis of small subunit ribosomal RNA (18S rDNA), 60 kDa glycoprotein (gp60) and internal transcribed spacer (ITS) of SSU rDNA. Phylogenetic analyses revealed the presence of C. meleagridis, C. baileyi, C. parvum, C. andersoni, C. muris, C. galli and C. ornithophilus, E. hellem genotype 1A and 2B, E. cuniculi genotype I and II and E. bieneusi genotype Peru 6, CHN-F1, D, Peru 8, Type IV, ZY37, E, CHN4, SCF2 and WR4. Captive pigeons were significantly more frequently parasitised with screened parasite than feral pigeons. Cryptosporidium meleagridis IIIa and a new subtype IIIl have been described, the oocysts of which are not infectious to immunodeficient mice, whereas chickens are susceptible. This investigation demonstrates that pigeons can be hosts to numerous species, genotypes and subtypes of the studied parasites. Consequently, they represent a potential source of infection for both livestock and humans.
- Keywords
- Birds, Experimental infection, Genotyping, PCR,
- MeSH
- Columbidae MeSH
- Cryptosporidium * genetics MeSH
- Encephalitozoon * genetics MeSH
- Enterocytozoon * genetics MeSH
- Feces parasitology MeSH
- Phylogeny MeSH
- Genetic Variation MeSH
- Genotype MeSH
- Cryptosporidiosis * epidemiology parasitology MeSH
- Chickens MeSH
- Humans MeSH
- Microsporidiosis * epidemiology veterinary parasitology MeSH
- Mice MeSH
- DNA, Ribosomal MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe epidemiology MeSH
- Names of Substances
- DNA, Ribosomal MeSH
We describe the morphological, biological, and molecular characteristics of Cryptosporidium pig genotype II and propose the species name Cryptosporidium scrofarum n. sp. to reflect its prevalence in adult pigs worldwide. Oocysts of C. scrofarum are morphologically indistinguishable from C. parvum, measuring 4.81-5.96 μm (mean=5.16)×4.23-5.29 μm (mean=4.83) with a length to width ratio of 1.07±0.06 (n=400). Oocysts of C. scrofarum obtained from a naturally infected pig were infectious for 8-week-old pigs but not 4-week-old pigs. The prepatent period in 8-week-old Cryptosporidium-naive pigs was 4-6 days and the patent period was longer than 30 days. The infection intensity of C. scrofarum in pigs was generally low, in the range 250-4000 oocysts per gram of feces. Infected pigs showed no clinical signs of cryptosporidiosis and no pathology was detected. Cryptosporidium scrofarum was not infectious for adult SCID mice, adult BALB/c mice, Mongolian gerbils (Meriones unguiculatus), southern multimammate mice (Mastomys coucha), yellow-necked mice (Apodemus flavicollis), or guinea pigs (Cavia porcellus). Phylogenetic analyses based on small subunit rRNA, actin, and heat shock protein 70 gene sequences revealed that C. scrofarum is genetically distinct from all known Cryptosporidium species.
- MeSH
- Cryptosporidium classification cytology genetics MeSH
- Species Specificity MeSH
- Feces parasitology MeSH
- Phylogeny * MeSH
- Genotype MeSH
- Gerbillinae MeSH
- Cryptosporidiosis pathology veterinary MeSH
- Guinea Pigs MeSH
- Mice, Inbred BALB C MeSH
- Mice, SCID MeSH
- Mice MeSH
- Swine Diseases parasitology pathology MeSH
- Swine MeSH
- Genes, Protozoan genetics MeSH
- Animals MeSH
- Check Tag
- Guinea Pigs MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Gastric cryptosporidia only inhabit the glandular part of the stomach of all age categories of their hosts and can cause chronic life-long infections independent of a host's immune status. The immune response in the stomach mucosa during the primary infection and re-infection with Cryptosporidium muris (TS03 and CB03) in immunocompetent BALB/c mice was characterized using flow cytometry analysis and measurement of IFN-gamma and IL10 by enzyme-linked immunosorbent assays (ELISA). Significantly, elevated migration of T lymphocytes (more than 1,000-fold), especially CD8+ T lymphocytes, to the stomach mucosa occurred during primary infection and persisted for more than 2 months after its resolution. The ex vivo cultures of splenocytes revealed very low levels of IFN-gamma production during the course of the primary infection (0.5 ng/ml), whereas in the following re-exposure to the parasites, the concentration of IFN-gamma rapidly increased 22-fold. Although the two parasite strains that were tested were genetically distinct, they yielded similar results in the induction of cellular immune responses, suggesting that these patterns are not unique to a single parasite strain. These results imply that the CD8+ T lymphocytes are involved in the immune response to gastric cryptosporidiosis and could play an important role in the elimination of C. muris infection in mice.
- MeSH
- Immunity, Cellular * MeSH
- Cryptosporidium immunology MeSH
- Enzyme-Linked Immunosorbent Assay MeSH
- Interferon-gamma metabolism MeSH
- Interleukin-10 metabolism MeSH
- Cryptosporidiosis immunology MeSH
- Humans MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Flow Cytometry MeSH
- Spleen immunology MeSH
- Immunity, Mucosal * MeSH
- T-Lymphocyte Subsets immunology MeSH
- Gastric Mucosa immunology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Interferon-gamma MeSH
- Interleukin-10 MeSH