Nejvíce citovaný článek - PubMed ID 17140703
Impairment of muscarinic transmission in transgenic APPswe/PS1dE9 mice
Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that the hipocampal cholinergic nerve terminals are specifically affected by apoE4 and that this effect is age dependent.
- Klíčová slova
- Alzheimer's disease (AD), acetylcholine release, apolipoprotein E4 (apoE4), hippocampus,
- MeSH
- acetylcholin metabolismus MeSH
- apolipoprotein E3 genetika MeSH
- apolipoprotein E4 genetika metabolismus MeSH
- cholin-O-acetyltransferasa metabolismus MeSH
- guanosin 5'-O-(3-thiotrifosfát) farmakologie MeSH
- hipokampus účinky léků metabolismus MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- N-methylskopolamin farmakologie MeSH
- receptory muskarinové metabolismus MeSH
- tritium metabolismus MeSH
- věkové faktory MeSH
- vezikulární transportní proteiny acetylcholinu metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholin MeSH
- apolipoprotein E3 MeSH
- apolipoprotein E4 MeSH
- cholin-O-acetyltransferasa MeSH
- guanosin 5'-O-(3-thiotrifosfát) MeSH
- N-methylskopolamin MeSH
- receptory muskarinové MeSH
- Slc18a3 protein, mouse MeSH Prohlížeč
- tritium MeSH
- vezikulární transportní proteiny acetylcholinu MeSH
We have found earlier that changes in membrane cholesterol content have distinct impact on signaling via the M1, M2, or M3 receptors expressed in CHO cells (CHO-M1 through CHO-M3). Now we investigated whether gradual changes in membrane cholesterol exerts differential effects on coupling of the M1 and M3 muscarinic receptors to preferential signaling pathways through Gq/11 and non-preferential Gs G-proteins signaling. Changes in membrane cholesterol resulted in only marginal alterations of antagonist and agonist affinity of the M1 and M3 receptors, and did not influence precoupling of either subtype. Changes in membrane cholesterol did not influence parameters of carbachol-stimulated GTP-γ(35)S binding in CHO-M1 membranes while reduction as well as augmentation of membrane cholesterol lowered the efficacy but increased the potency of carbachol in CHO-M3 membranes. Gradual increase or decrease in membrane cholesterol concentration dependently attenuated agonist-induced inositolphosphates release while only cholesterol depletion increased basal values in both cell lines. Similarly, membrane cholesterol manipulation modified basal and agonist-stimulated cAMP synthesis via Gs in the same way in both cell lines. These results demonstrate that changes in membrane cholesterol concentration differentially impact preferential and non-preferential M1 and M3 receptor signaling. They point to the activated G-protein/effector protein interaction as the main site of action in alterations of M1 receptor-mediated stimulation of second messenger pathways. On the other hand, modifications in agonist-stimulated GTP-γ(35)S binding in CHO-M3 membranes indicate that in this case changes in ligand-activated receptor/G-protein interaction may also play a role.
- Klíčová slova
- Agonist binding, Cholesterol, G-Proteins, Muscarinic receptors, Signal transduction, cAMP synthesis,
- MeSH
- CHO buňky MeSH
- cholesterol metabolismus MeSH
- Cricetulus MeSH
- karbachol farmakologie MeSH
- lidé MeSH
- proteiny vázající GTP metabolismus MeSH
- receptor muskarinový M1 účinky léků metabolismus MeSH
- receptor muskarinový M3 účinky léků metabolismus MeSH
- signální transdukce MeSH
- systémy druhého messengeru fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol MeSH
- karbachol MeSH
- proteiny vázající GTP MeSH
- receptor muskarinový M1 MeSH
- receptor muskarinový M3 MeSH
An allosteric modulator is a ligand that binds to an allosteric site on the receptor and changes receptor conformation to produce increase (positive cooperativity) or decrease (negative cooperativity) in the binding or action of an orthosteric agonist (e.g., acetylcholine). Since the identification of gallamine as the first allosteric modulator of muscarinic receptors in 1976, this unique mode of receptor modulation has been intensively studied by many groups. This review summarizes over 30 years of research on the molecular mechanisms of allosteric interactions of drugs with the receptor and for new allosteric modulators of muscarinic receptors with potential therapeutic use. Identification of positive modulators of acetylcholine binding and function that enhance neurotransmission and the discovery of highly selective allosteric modulators are mile-stones on the way to novel therapeutic agents for the treatment of schizophrenia, Alzheimer's disease and other disorders involving impaired cognitive function.
- Klíčová slova
- Alzheimer’s disease, allosteric modulation, muscarinic acetylcholine receptors, schizophrenia,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
We investigated the influence of membrane cholesterol content on preferential and non-preferential signaling through the M(2) muscarinic acetylcholine receptor expressed in CHO cells. Cholesterol depletion by 39% significantly decreased the affinity of M(2) receptors for [(3)H]-N-methylscopolamine ([(3)H]-NMS) binding and increased B(max) in intact cells and membranes. Membranes displayed two-affinity agonist binding sites for carbachol and cholesterol depletion doubled the fraction of high-affinity binding sites. In intact cells it also reduced the rate of agonist-induced receptor internalization and changed the profile of agonist binding from a single site to two affinity states. Cholesterol enrichment by 137% had no effects on carbachol E(max) of cAMP synthesis inhibition and on cAMP synthesis stimulation and inositolphosphates (IP) accumulation at higher agonist concentrations (non-preferred pathways). On the other hand, cholesterol depletion significantly increased E(max) of cAMP synthesis inhibition or stimulation without change in potency, and decreased E(max) of IP accumulation. Noteworthy, modifications of membrane cholesterol had no effect on membrane permeability, oxidative activity, protein content, or relative expression of G(s), G(i/o), and G(q/11) alpha subunits. These results demonstrate distinct changes of M(2) receptor signaling through both preferential and non-preferential G-proteins consequent to membrane cholesterol depletion that occur at the level of receptor/G-protein/effector protein interactions in the cell membrane. The significant decrease of IP accumulation by cholesterol depletion was also observed in cells expressing M(3) receptors and by both cholesterol depletion and enrichment in cells expressing M(1) receptors indicating relevance of reduced G(q/11) signaling for the pathogenesis of Alzheimer's disease.
- MeSH
- acetylcholin analogy a deriváty MeSH
- antagonisté muskarinových receptorů farmakologie MeSH
- beta-cyklodextriny farmakologie MeSH
- buněčná membrána účinky léků metabolismus MeSH
- CHO buňky MeSH
- cholesterol metabolismus MeSH
- Cricetulus MeSH
- karbachol analogy a deriváty metabolismus farmakologie MeSH
- křečci praví MeSH
- lidé MeSH
- N-methylskopolamin metabolismus farmakologie MeSH
- proteiny vázající GTP metabolismus MeSH
- receptor muskarinový M2 metabolismus MeSH
- systémy druhého messengeru * účinky léků MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- acetylcholin MeSH
- antagonisté muskarinových receptorů MeSH
- beta-cyklodextriny MeSH
- cholesterol MeSH
- karbachol MeSH
- methyl-beta-cyclodextrin MeSH Prohlížeč
- N-methylskopolamin MeSH
- proteiny vázající GTP MeSH
- receptor muskarinový M2 MeSH