Most cited article - PubMed ID 17177058
Trichobilharzia szidati: the lung phase of migration within avian and mammalian hosts
Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis (schistosomiasis) affecting more than 200 million people in tropical and subtropical countries, and infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The "Aporocotylidae" sensu lato are pathogenic in fish, "Spirorchiidae" sensu lato in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in mollusks and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.
- Keywords
- Aporocotylidae, Blood flukes, Diplostomidae, Sanguinicolidae, Schistosoma, Schistosomatidae, Skin penetration, Spirorchiidae, Strigeidae, Trematodes,
- MeSH
- Trematode Infections * parasitology veterinary MeSH
- Host-Parasite Interactions MeSH
- Humans MeSH
- Schistosomatidae genetics MeSH
- Life Cycle Stages MeSH
- Trematoda physiology pathogenicity MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Trichobilharzia species are parasitic flatworms (called schistosomes or flukes) that cause important diseases in birds and humans, but very little is known about their molecular biology. Here, using a transcriptomics-bioinformatics-based approach, we explored molecular aspects pertaining to the nutritional requirements of Trichobilharzia szidati ('visceral fluke') and T. regenti ('neurotropic fluke') in their avian host. We studied the larvae of each species before they enter (cercariae) and as they migrate (schistosomules) through distinct tissues in their avian (duck) host. Cercariae of both species were enriched for pathways or molecules associated predominantly with carbohydrate metabolism, oxidative phosphorylation and translation of proteins linked to ribosome biogenesis, exosome production and/or lipid biogenesis. Schistosomules of both species were enriched for pathways or molecules associated with processes including signal transduction, cell turnover and motility, DNA replication and repair, molecular transport and/or catabolism. Comparative informatic analyses identified molecular repertoires (within, e.g., peptidases and secretory proteins) in schistosomules that can broadly degrade macromolecules in both T. szidati and T. regenti, and others that are tailored to each species to selectively acquire nutrients from particular tissues through which it migrates. Thus, this study provides molecular evidence for distinct modes of nutrient acquisition between the visceral and neurotropic flukes of birds.
- MeSH
- Cercaria classification genetics pathogenicity MeSH
- DNA, Helminth classification genetics MeSH
- Phylogeny * MeSH
- Ducks genetics parasitology MeSH
- Humans MeSH
- Bird Diseases genetics parasitology MeSH
- Birds genetics parasitology MeSH
- Schistosomatidae genetics pathogenicity MeSH
- Schistosomiasis genetics parasitology MeSH
- Trematoda classification genetics pathogenicity MeSH
- Computational Biology MeSH
- Nutrients MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Helminth MeSH
Cercarial dermatitis (CD) is an allergic skin disease that rises in consequence of infection by invasive stages (cercariae) of trematodes of the family Schistosomatidae. CD has been considered a re-emerging disease, human cases have been reported from all continents, and tourism-threatening outbreaks occur even in frequented recreational areas. Although the symptoms of CD are generally known, the data on immune response in human patients are sporadic and incomprehensive. In the present study, we attempted to correlate the symptoms, personal history, and time course of CD in human patients with differential cell counts, dynamics of selected cytokines, and dynamics and quality of antibody response. By a systematic follow-up, we obtained a uniquely complex dataset from ten persons accidentally and concurrently infected by the same parasite species in the same locality. The onset of CD was significantly faster, and the symptoms were heavier in participants with a history of CD if compared to naive ones, who, however, also developed some of the symptoms. The repeatedly infected persons had elevated proportion of eosinophils 1 week post exposure (p.e.) and a stronger specific IgG but not IgM response, whereas specific IgE response was not observed. Increased serum levels of IL-4 occurred 1 and 3 week(s) p.e. in all participants. There was high variability in individual immunoblot patterns of IgG response, and no antigen with a universal diagnostic potential was confirmed. The presented analyses suggested that a complex approach can improve the accuracy of the diagnosis of CD, but component data should be interpreted carefully.
- Keywords
- Allergy, Diagnosis, Immunity, Schistosome, Skin, Trichobilharzia,
- MeSH
- Dermatitis immunology parasitology MeSH
- Adult MeSH
- Disease Outbreaks MeSH
- Immunoglobulin E blood MeSH
- Immunoglobulin G blood MeSH
- Immunoglobulin M blood MeSH
- Trematode Infections diagnosis immunology parasitology MeSH
- Interleukin-4 blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Follow-Up Studies MeSH
- Antibodies, Protozoan blood MeSH
- Surveys and Questionnaires MeSH
- Ponds parasitology MeSH
- Schistosomatidae immunology MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- IL4 protein, human MeSH Browser
- Immunoglobulin E MeSH
- Immunoglobulin G MeSH
- Immunoglobulin M MeSH
- Interleukin-4 MeSH
- Antibodies, Protozoan MeSH
Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis.
- MeSH
- Biodiversity MeSH
- Disease Outbreaks MeSH
- Host Specificity MeSH
- Humans MeSH
- Bird Diseases parasitology transmission MeSH
- Skin Diseases, Parasitic epidemiology immunology parasitology prevention & control MeSH
- Birds MeSH
- Schistosomiasis epidemiology immunology parasitology prevention & control MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Cercarial dermatitis (swimmer's itch) is a common non-communicable water-borne disease. It is caused by penetration of the skin by larvae (cercariae) of schistosomatid flukes and develops as a maculopapular skin eruption after repeated contacts with the parasites. The number of outbreaks of the disease is increasing, and cercarial dermatitis can therefore be considered as an emerging problem. Swimmer's itch is mostly associated with larvae of the bird schistosomes of Trichobilharzia spp. Recent results have shown that mammalian infections (including man) manifest themselves as an allergic reaction which is able to trap and eliminate parasites in the skin. Studies on mammals experimentally infected by bird schistosome cercariae revealed, however, that during primary infection, parasites are able to escape from the skin to the lungs or central nervous system. This review covers basic information on detection of the infectious agents in the field and the clinical course of the disease, including other pathologies which may develop after infection by cercariae, and diagnosis of the disease.
- MeSH
- Central Nervous System microbiology MeSH
- Cercaria immunology MeSH
- Dermatitis diagnosis immunology parasitology MeSH
- Skin microbiology pathology MeSH
- Humans MeSH
- Disease Models, Animal MeSH
- Swimming MeSH
- Lung microbiology MeSH
- Schistosoma MeSH
- Schistosomiasis complications diagnosis immunology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Cercariae of bird schistosomes (Trichobilharzia szidati and Trichobilharzia regenti) were mechanically stimulated to transform to schistosomula and kept in different cultivation media supplemented with duck red blood cells and/or homogenized nervous tissue. The development under in vitro conditions was compared with that in vivo, using the following characters: emptying of penetration glands, surface changes, food uptake, and growth of early schistosomula. The results show that the cultivation medium routinely used for human schistosomes is also suitable for mass production of early schistosomula of bird schistosomes, including the unique nasal species-T. regenti. The changes observed resemble those present in worms developing in vivo; therefore, the in vitro produced early schistosomula might be used for further studies of host-parasite interactions.
- MeSH
- Animal Structures parasitology MeSH
- Trematode Infections parasitology veterinary MeSH
- Culture Media chemistry MeSH
- Bird Diseases parasitology MeSH
- Nasal Cavity parasitology MeSH
- Parasitology methods MeSH
- Birds MeSH
- Schistosomatidae growth & development isolation & purification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Culture Media MeSH