Nejvíce citovaný článek - PubMed ID 17196526
Converging evidence suggests that schizophrenia (SZ) with primary, enduring negative symptoms (i.e., Deficit SZ (DSZ)) represents a distinct entity within the SZ spectrum while the neurobiological underpinnings remain undetermined. In the largest dataset of DSZ and Non-Deficit (NDSZ), we conducted a meta-analysis of data from 1560 individuals (168 DSZ, 373 NDSZ, 1019 Healthy Controls (HC)) and a mega-analysis of a subsampled data from 944 individuals (115 DSZ, 254 NDSZ, 575 HC) collected across 9 worldwide research centers of the ENIGMA SZ Working Group (8 in the mega-analysis), to clarify whether they differ in terms of cortical morphology. In the meta-analysis, sites computed effect sizes for differences in cortical thickness and surface area between SZ and control groups using a harmonized pipeline. In the mega-analysis, cortical values of individuals with schizophrenia and control participants were analyzed across sites using mixed-model ANCOVAs. The meta-analysis of cortical thickness showed a converging pattern of widespread thinner cortex in fronto-parietal regions of the left hemisphere in both DSZ and NDSZ, when compared to HC. However, DSZ have more pronounced thickness abnormalities than NDSZ, mostly involving the right fronto-parietal cortices. As for surface area, NDSZ showed differences in fronto-parietal-temporo-occipital cortices as compared to HC, and in temporo-occipital cortices as compared to DSZ. Although DSZ and NDSZ show widespread overlapping regions of thinner cortex as compared to HC, cortical thinning seems to better typify DSZ, being more extensive and bilateral, while surface area alterations are more evident in NDSZ. Our findings demonstrate for the first time that DSZ and NDSZ are characterized by different neuroimaging phenotypes, supporting a nosological distinction between DSZ and NDSZ and point toward the separate disease hypothesis.
- MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozková kůra diagnostické zobrazování MeSH
- neurozobrazování MeSH
- schizofrenie * genetika MeSH
- syndrom MeSH
- temenní lalok MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
Motor inhibitory control is a central executive function, but only recently the importance of perceptual mechanisms for these processes has been focused. It is elusive whether basic mechanisms governing sensory perception affect motor inhibitory control. We examine whether sensory lateral inhibition (LI) processes modulate motor inhibitory control using a system neurophysiological approach combining EEG signal decomposition with source localization methods in a somatosensory GO/NOGO task. The results show that inter-individual variations in the strength of LI effects predominantly affect processes when information needs to be integrated between cerebral hemispheres. If information needs to be integrated between hemispheres, strong sensory suppression will lead to more impulsive errors. Importantly, the neurophysiological data suggest that not purely perceptual or motor processes are affected. Rather, LI affects the response selection level and modulates processes of stimulus categorization. This is associated with activity modulations in the posterior parietal cortex. The results suggest that when sensory suppression is high and when information needs to be integrated across hemispheres, these processes are less efficient, which likely leads to worse motor inhibitory control. The results show how basis principles modulating perceptual processes affect subsequent motor inhibitory control processes.
- MeSH
- analýza rozptylu MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- evokované potenciály MeSH
- exekutivní funkce * MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozková kůra fyziologie MeSH
- pohybová aktivita * MeSH
- psychomotorický výkon * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH