Nejvíce citovaný článek - PubMed ID 17259983
MicroRNAs (miRNAs) are ubiquitous small RNAs guiding post-transcriptional gene repression in countless biological processes. However, the miRNA pathway in mouse oocytes appears inactive and dispensable for development. We propose that marginalization of the miRNA pathway activity stems from the constraints and adaptations of RNA metabolism elicited by the diluting effects of oocyte growth. We report that miRNAs do not accumulate like mRNAs during the oocyte growth because miRNA turnover has not adapted to it. The most abundant miRNAs total tens of thousands of molecules in growing (∅ 40 μm) and fully grown (∅ 80 μm) oocytes, a number similar to that observed in much smaller fibroblasts. The lack of miRNA accumulation results in a 100-fold lower miRNA concentration in fully grown oocytes than in somatic cells. This brings a knock-down-like effect, where diluted miRNAs engage targets but are not abundant enough for significant repression. Low-miRNA concentrations were observed in rat, hamster, porcine and bovine oocytes, arguing that miRNA inactivity is not mouse-specific but a common mammalian oocyte feature. Injection of 250,000 miRNA molecules was sufficient to restore reporter repression in mouse and porcine oocytes, suggesting that miRNA inactivity comes from low-miRNA abundance and not from some suppressor of the pathway.
- MeSH
- buňky 3T3 MeSH
- druhová specificita MeSH
- křečci praví MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- messenger RNA genetika metabolismus MeSH
- mikro RNA genetika metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- oocyty cytologie metabolismus MeSH
- oogeneze * MeSH
- prasata MeSH
- skot MeSH
- teoretické modely MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- krysa rodu Rattus MeSH
- myši MeSH
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA MeSH
The oocyte-to-embryo transition (OET) arguably initiates with formation of a primordial follicle and culminates with reprogramming of gene expression during the course of zygotic genome activation. This transition results in converting a highly differentiated cell, i.e. oocyte, to undifferentiated cells, i.e. initial blastomeres of a preimplantation embryo. A plethora of changes occur during the OET and include, but are not limited to, changes in transcription, chromatin structure, and protein synthesis; accumulation of macromolecules and organelles that will comprise the oocyte's maternal contribution to the early embryo; sequential acquisition of meiotic and developmental competence to name but a few. This review will focus on transcriptional and post-transcriptional changes that occur during OET in mouse because such changes are likely the major driving force for OET. We often take a historical and personal perspective, and highlight how advances in experimental methods often catalyzed conceptual advances in understanding the molecular bases for OET. We also point out questions that remain open and therefore represent topics of interest for future investigation.
- MeSH
- buněčná diferenciace fyziologie MeSH
- embryonální vývoj fyziologie MeSH
- genom MeSH
- myši MeSH
- oocyty fyziologie MeSH
- ovariální folikul fyziologie MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
MicroRNA (miRNA) and RNA interference (RNAi) pathways employ RNase III Dicer for the biogenesis of small RNAs guiding post-transcriptional repression. Requirements for Dicer activity differ in the two pathways. The biogenesis of miRNAs requires a single Dicer cleavage of a short hairpin precursor to produce a small RNA with a precisely defined sequence, while small RNAs in RNAi come from a processive cleavage of a long double-stranded RNA (dsRNA) into a pool of small RNAs with different sequences. While Dicer is generally conserved among eukaryotes, its substrate recognition, cleavage, and biological roles differ. In Metazoa, a single Dicer can function as a universal factor for RNAi and miRNA pathways or as a factor adapted specifically for one of the pathways. In this review, we focus on the structure, function, and evolution of mammalian Dicer. We discuss key structural features of Dicer and other factors defining Dicer substrate repertoire and biological functions in mammals in comparison with invertebrate models. The key for adaptation of Dicer for miRNA or RNAi pathways is the N-terminal helicase, a dynamically evolving Dicer domain. Its functionality differs between mammals and invertebrates: the mammalian Dicer is well adapted to produce miRNAs while its ability to support RNAi is limited.
- Klíčová slova
- Dicer, Helicase, PAZ, dsRNA, miRNA, siRNA,
- MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- molekulární evoluce MeSH
- ribonukleasa III chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mikro RNA MeSH
- ribonukleasa III MeSH
The transcription factor p63 has important functions in tumorigenesis, epidermal differentiation and stem cell self-renewal. The TP63 gene encodes multiple protein isoforms that have different or even antagonistic roles in these processes. The balance of p63 isoforms, together with the presence or absence of the other p53 family members, p73 and p53, has a striking biological impact. There is increasing evidence that interactions between p53-family members, whether cooperative or antagonistic, are involved in various cell processes. This review summarizes the current understanding of the role of p63 in tumorigenesis, metastasis, cell migration and senescence. In particular, recent data indicate important roles in adult stem cell and cancer stem cell regulation and in the response of cancer cells to therapy.
- MeSH
- kmenové buňky metabolismus MeSH
- lidé MeSH
- myši MeSH
- nádorové kmenové buňky metabolismus MeSH
- nádorové supresorové proteiny genetika metabolismus fyziologie MeSH
- nádory metabolismus MeSH
- protein - isoformy genetika metabolismus fyziologie MeSH
- transkripční faktory genetika metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- nádorové supresorové proteiny MeSH
- protein - isoformy MeSH
- TP63 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
RNA silencing is a complex of mechanisms that regulate gene expression through small RNA molecules. The microRNA (miRNA) pathway is the most common of these in mammals. Genome-encoded miRNAs suppress translation in a sequence-specific manner and facilitate shifts in gene expression during developmental transitions. Here, we discuss the role of miRNAs in oocyte-to-zygote transition and in the control of pluripotency. Existing data suggest a common principle involving miRNAs in defining pluripotent and differentiated cells. RNA silencing pathways also rapidly evolve, resulting in many unique features of RNA silencing in different taxonomic groups. This is exemplified in the mouse model of oocyte-to-zygote transition, in which the endogenous RNA interference pathway has acquired a novel role in regulating protein-coding genes, while the miRNA pathway has become transiently suppressed.
- MeSH
- fylogeneze MeSH
- lidé MeSH
- malá interferující RNA genetika metabolismus MeSH
- mikro RNA klasifikace genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- oocyty cytologie fyziologie MeSH
- pluripotentní kmenové buňky cytologie fyziologie MeSH
- RNA interference * MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- zvířata MeSH
- zygota cytologie fyziologie MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- malá interferující RNA MeSH
- mikro RNA MeSH