Nejvíce citovaný článek - PubMed ID 17552900
Composite hyaluronate-type I collagen-fibrin scaffold in the therapy of osteochondral defects in miniature pigs
In an asymptomatic population, we investigated the relationships between glycated haemoglobin (HbA1c) and cartilage T2 relaxation time at the knee joint level. Fourteen and 17 participants with high and normal levels of HbA1c were recruited, respectively. A blood sample was used to determine the HbA1c level. T2 relaxation time (T2) of the superficial and deep parts of the femoral cartilage in the anterior, central, and posterior topographical sites was calculated using magnetic resonance (1.5 T) images. Each participant completed a knee injury and osteoarthritis outcome score questionnaire (KOOS) and a series of biomechanical analyses while running at their self-selected speed. The group with a high level of HbA1c had a lower score of KOOS symptoms than the other group (P < 0.05). HbA1c was found to be negatively related to the KOOS symptoms score. The group with a high level of HbA1c had low T2 values in all of the investigated topographical sites of the knee femoral cartilage (P < 0.05 in all cases). T2 was negatively correlated with HbA1c levels in all investigated knee femoral cartilage regions. Our data suggest that the subjects with high levels of HbA1c were those with low knee joint symptoms and lower values of T2. These results indicate that HbA1c could be correlated with cartilage deterioration due to its ability to dehydrate collagen fibre, possibly acting as a risk factor for the development of osteoarthritis.
- Klíčová slova
- Biomechanics, Glycated-hemoglobin, Osteoarthritis, T2 relaxation time,
- MeSH
- dospělí MeSH
- glykovaný hemoglobin * metabolismus MeSH
- kloubní chrupavka * diagnostické zobrazování metabolismus fyziologie MeSH
- kolenní kloub * diagnostické zobrazování fyziologie metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykovaný hemoglobin * MeSH
- hemoglobin A1c protein, human MeSH Prohlížeč
Hydrogels are suitable for osteochondral defect regeneration as they mimic the viscoelastic environment of cartilage. However, their biomechanical properties are not sufficient to withstand high mechanical forces. Therefore, we have prepared electrospun poly-ε-caprolactone-chitosan (PCL-chit) and poly(ethylene oxide)-chitosan (PEO-chit) nanofibers, and FTIR analysis confirmed successful blending of chitosan with other polymers. The biocompatibility of PCL-chit and PEO-chit scaffolds was tested; fibrochondrocytes and chondrocytes seeded on PCL-chit showed superior metabolic activity. The PCL-chit nanofibers were cryogenically grinded into microparticles (mean size of about 500 µm) and further modified by polyethylene glycol-biotin in order to bind the anti-CD44 antibody, a glycoprotein interacting with hyaluronic acid (PCL-chit-PEGb-antiCD44). The PCL-chit or PCL-chit-PEGb-antiCD44 microparticles were mixed with a composite gel (collagen/fibrin/platelet rich plasma) to improve its biomechanical properties. The storage modulus was higher in the composite gel with microparticles compared to fibrin. The Eloss of the composite gel and fibrin was higher than that of the composite gel with microparticles. The composite gel either with or without microparticles was further tested in vivo in a model of osteochondral defects in rabbits. PCL-chit-PEGb-antiCD44 significantly enhanced osteogenic regeneration, mainly by desmogenous ossification, but decreased chondrogenic differentiation in the defects. PCL-chit-PEGb showed a more homogeneous distribution of hyaline cartilage and enhanced hyaline cartilage differentiation.
- Klíčová slova
- CD44 antibody, cartilage, collagen, fibrin, microparticles, poly-ε-caprolactone,
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: The aim of this study was to develop functionalized nanofibres as a simple delivery system for growth factors (GFs) and make nanofibre cell-seeded scaffold implants a one-step intervention. MATERIALS AND METHODS: We have functionalized polycaprolactone (PCL) nanofibres with thrombocytes adherent on them. Immobilized, these thrombocytes attached to nanofibre scaffolds were used as a nanoscale delivery system for native (autologous) proliferation and differentiation factors, in vitro. Pig chondrocytes were seeded on the thrombocyte-coated scaffolds and levels of proliferation and differentiation of these cells were compared with those seeded on non-coated scaffolds. RESULTS: Immobilized thrombocytes on PCL nanofibres effectively enhanced chondrocyte proliferation due to time-dependent degradation of thrombocytes and release of their GFs. CONCLUSIONS: These simply functionalized scaffolds present new possibilities for nanofibre applications, as smart cell scaffolds equipped with a GF delivery tool.
- MeSH
- buněčná diferenciace MeSH
- chondrocyty cytologie MeSH
- imobilizované buňky metabolismus MeSH
- kultivované buňky MeSH
- mezibuněčné signální peptidy a proteiny aplikace a dávkování MeSH
- nanovlákna chemie MeSH
- nosiče léků chemie MeSH
- polyestery chemie MeSH
- prasata MeSH
- proliferace buněk MeSH
- trombocyty cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mezibuněčné signální peptidy a proteiny MeSH
- nosiče léků MeSH
- polycaprolactone MeSH Prohlížeč
- polyestery MeSH