Most cited article - PubMed ID 17698369
Positioning of NORs and NOR-bearing chromosomes in relation to nucleoli
Nucleoli are formed on the basis of ribosomal genes coding for RNAs of ribosomal particles, but also include a great variety of other DNA regions. In this article, we discuss the characteristics of ribosomal DNA: the structure of the rDNA locus, complex organization and functions of the intergenic spacer, multiplicity of gene copies in one cell, selective silencing of genes and whole gene clusters, relation to components of nucleolar ultrastructure, specific problems associated with replication. We also review current data on the role of non-ribosomal DNA in the organization and function of nucleoli. Finally, we discuss probable causes preventing efficient visualization of DNA in nucleoli.
- Keywords
- DNA staining, NADs, Nucleolus, Replication, Transcription activity, rDNA,
- MeSH
- Cell Nucleolus genetics metabolism MeSH
- Humans MeSH
- DNA, Ribosomal genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- DNA, Ribosomal MeSH
Mammalian chromosomes occupy chromosome territories within nuclear space the positions of which are generally accepted as non-random. However, it is still controversial whether position of chromosome territories/chromatin is maintained in daughter cells. We addressed this issue and investigated maintenance of various chromatin regions of unknown composition as well as nucleolus-associated chromatin, a significant part of which is composed of nucleolus organizer region-bearing chromosomes. The photoconvertible histone H4-Dendra2 was used to label such regions in transfected HepG2 cells, and its position was followed up to next interphase. The distribution of labeled chromatin in daughter cells exhibited a non-random character. However, its distribution in a vast majority of daughter cells extensively differed from the original ones and the labeled nucleolus-associated chromatin differently located into the vicinity of different nucleoli. Therefore, our results were not consistent with a concept of preservation chromatin position. This conclusion was supported by the finding that the numbers of nucleoli significantly differed between the two daughter cells. Our results support a view that while the transfected daughter HepG2 cells maintain some features of the parental cell chromosome organization, there is also a significant stochastic component associated with reassortment of chromosome territories/chromatin that results in their positional rearrangements.
- MeSH
- Cell Nucleolus metabolism MeSH
- Cell Nucleus metabolism MeSH
- Cell Line MeSH
- Time Factors MeSH
- Chromatin chemistry metabolism MeSH
- Chromosomes ultrastructure MeSH
- Fibroblasts metabolism MeSH
- Microscopy, Fluorescence methods MeSH
- Histones metabolism MeSH
- Humans MeSH
- Image Processing, Computer-Assisted MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chromatin MeSH
- Histones MeSH
It is known that chromosomes occupy non-random positions in the cell nucleus. However, it is not clear to what extent their nuclear positions, together with their neighborhood, are conserved in daughter cells. To address specific aspects of this problem, we used the model of the chromosomes carrying ribosomal genes that are organized in clusters termed Nucleolus Organizer Regions (NORs). We compared the association of chosen NOR-bearing chromosomes (NOR-chromosomes) with nucleoli, as well as the numbers of nucleoli, in the pairs of daughter cells, and established how frequently the daughter cells had equal numbers of the homologs of certain NOR-chromosomes associated with individual nucleoli. The daughter cells typically had different numbers of nucleoli. At the same time, using immuno-FISH with probes for chromosomes 14 and 15 in HeLa cells, we found that the cell pairs with identical combinations appeared significantly more frequently than predicted by the random model. Thus, although the total number of chromosomes associated with nucleoli is variable, our data indicate that the position of the NOR-bearing chromosomes in relation to nucleoli is partly conserved through mitosis.
- MeSH
- Cell Nucleolus physiology MeSH
- HeLa Cells MeSH
- In Situ Hybridization, Fluorescence MeSH
- Humans MeSH
- Chromosomes, Human, Pair 14 * MeSH
- Chromosomes, Human, Pair 15 * MeSH
- Mitosis genetics MeSH
- Models, Genetic MeSH
- Nucleolus Organizer Region * MeSH
- Chromosome Positioning * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH