Nejvíce citovaný článek - PubMed ID 18079113
Francisella tularensis is a Gram-negative, facultative intracellular bacterium, causing a severe disease called tularemia. It secretes unusually shaped nanotubular outer membrane vesicles (OMV) loaded with a number of virulence factors and immunoreactive proteins. In the present study, the vesicles were purified from a clinical isolate of subsp. holarctica strain FSC200. We here provide a comprehensive proteomic characterization of OMV using a novel approach in which a comparison of OMV and membrane fraction is performed in order to find proteins selectively enriched in OMV vs. membrane. Only these proteins were further considered to be really involved in the OMV function and/or their exceptional structure. OMV were also isolated from bacteria cultured under various cultivation conditions simulating the diverse environments of F. tularensis life cycle. These included conditions mimicking the milieu inside the mammalian host during inflammation: oxidative stress, low pH, and high temperature (42°C); and in contrast, low temperature (25°C). We observed several-fold increase in vesiculation rate and significant protein cargo changes for high temperature and low pH. Further proteomic characterization of stress-derived OMV gave us an insight how the bacterium responds to the hostile environment of a mammalian host through the release of differentially loaded OMV. Among the proteins preferentially and selectively packed into OMV during stressful cultivations, the previously described virulence factors connected to the unique intracellular trafficking of Francisella were detected. Considerable changes were also observed in a number of proteins involved in the biosynthesis and metabolism of the bacterial envelope components like O-antigen, lipid A, phospholipids, and fatty acids. Data are available via ProteomeXchange with identifier PXD013074.
- Klíčová slova
- FSC200, Francisella tularensis, host–pathogen interaction, outer membrane vesicles, stress response, virulence factor,
- Publikační typ
- časopisecké články MeSH
Dendritic cells (DCs) infected by Francisella tularensis are poorly activated and do not undergo classical maturation process. Although reasons of such unresponsiveness are not fully understood, their impact on the priming of immunity is well appreciated. Previous attempts to explain the behavior of Francisella-infected DCs were hypothesis-driven and focused on events at later stages of infection. Here, we took an alternative unbiased approach by applying methods of global phosphoproteomics to analyze the dynamics of cell signaling in primary DCs during the first hour of infection by Francisella tularensis Presented results show that the early response of DCs to Francisella occurs in phases and that ERK and p38 signaling modules induced at the later stage are differentially regulated by virulent and attenuated ΔdsbA strain. These findings imply that the temporal orchestration of host proinflammatory pathways represents the integral part of Francisella life-cycle inside hijacked DCs.
- MeSH
- buněčné linie MeSH
- dendritické buňky metabolismus mikrobiologie MeSH
- extracelulárním signálem regulované MAP kinasy metabolismus MeSH
- fosforylace MeSH
- Francisella tularensis * MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- myši inbrední C57BL MeSH
- tularemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- extracelulárním signálem regulované MAP kinasy MeSH
- mitogenem aktivované proteinkinasy p38 MeSH
It appears that most glycoproteins found in pathogenic bacteria are associated with virulence. Despite the recent identification of novel virulence factors, the mechanisms of virulence in Francisella tularensis are poorly understood. In spite of its importance, questions about glycosylation of proteins in this bacterium and its potential connection with bacterial virulence have not been answered yet. In the present study, several putative Francisella tularensis glycoproteins were characterized through the combination of carbohydrate-specific detection and lectin affinity with highly sensitive mass spectrometry utilizing the bottom-up proteomic approach. The protein PilA that was recently found as being possibly glycosylated, as well as other proteins with designation as novel factors of virulence, were among the proteins identified in this study. The reported data compile the list of potential glycoproteins that may serve as a takeoff platform for a further definition of proteins modified by glycans, faciliting a better understanding of the function of protein glycosylation in pathogenicity of Francisella tularensis.
- MeSH
- 2D gelová elektroforéza MeSH
- bakteriální proteiny chemie metabolismus MeSH
- chromatografie afinitní MeSH
- fluorescenční barviva MeSH
- Francisella tularensis chemie metabolismus MeSH
- glykoproteiny chemie metabolismus MeSH
- glykosylace MeSH
- lektiny MeSH
- molekulární sekvence - údaje MeSH
- polysacharidy metabolismus MeSH
- proteom chemie metabolismus MeSH
- proteomika metody MeSH
- sekvence aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fluorescenční barviva MeSH
- glykoproteiny MeSH
- lektiny MeSH
- polysacharidy MeSH
- proteom MeSH