Nejvíce citovaný článek - PubMed ID 18086914
ZapE/Afg1 is a component of the inner cell membrane of some eubacteria and the inner mitochondrial membrane of eukaryotes. This protein is involved in FtsZ-dependent division of eubacteria. In the yeast and human mitochondrion, ZapE/Afg1 likely interacts with Oxa1 and facilitates the degradation of mitochondrion-encoded subunits of respiratory complexes. Furthermore, the depletion of ZapE increases resistance to apoptosis, decreases oxidative stress tolerance, and impacts mitochondrial protein homeostasis. It remains unclear whether ZapE is a multifunctional protein, or whether some of the described effects are just secondary phenotypes. Here, we have analyzed the functions of ZapE in Trypanosoma brucei, a parasitic protist, and an important model organism. Using a newly developed proximity-dependent biotinylation approach (BioID2), we have identified the inner mitochondrial membrane insertase Oxa1 among three putative interacting partners of ZapE, which is present in two paralogs. RNAi-mediated depletion of both ZapE paralogs likely affected the function of respiratory complexes I and IV. Consistently, we show that the distribution of mitochondrial ZapE is restricted only to organisms with Oxa1, respiratory complexes, and a mitochondrial genome. We propose that the evolutionarily conserved interaction of ZapE with Oxa1, which is required for proper insertion of many inner mitochondrial membrane proteins, is behind the multifaceted phenotype caused by the ablation of ZapE.
- MeSH
- biotinylace MeSH
- delece genu * MeSH
- down regulace MeSH
- Eukaryota genetika MeSH
- fenotyp MeSH
- fylogeneze MeSH
- genom mitochondriální MeSH
- mitochondriální proteiny metabolismus MeSH
- mitochondrie metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- respirační komplex I metabolismus MeSH
- respirační komplex IV metabolismus MeSH
- Trypanosoma brucei brucei metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální proteiny MeSH
- protozoální proteiny MeSH
- respirační komplex I MeSH
- respirační komplex IV MeSH
AIMS: Expression of the HER2 oncogene in breast cancer is associated with resistance to treatment, and Her2 may regulate bioenergetics. Therefore, we investigated whether disruption of the electron transport chain (ETC) is a viable strategy to eliminate Her2high disease. RESULTS: We demonstrate that Her2high cells and tumors have increased assembly of respiratory supercomplexes (SCs) and increased complex I-driven respiration in vitro and in vivo. They are also highly sensitive to MitoTam, a novel mitochondrial-targeted derivative of tamoxifen. Unlike tamoxifen, MitoTam efficiently suppresses experimental Her2high tumors without systemic toxicity. Mechanistically, MitoTam inhibits complex I-driven respiration and disrupts respiratory SCs in Her2high background in vitro and in vivo, leading to elevated reactive oxygen species production and cell death. Intriguingly, higher sensitivity of Her2high cells to MitoTam is dependent on the mitochondrial fraction of Her2. INNOVATION: Oncogenes such as HER2 can restructure ETC, creating a previously unrecognized therapeutic vulnerability exploitable by SC-disrupting agents such as MitoTam. CONCLUSION: We propose that the ETC is a suitable therapeutic target in Her2high disease. Antioxid. Redox Signal. 26, 84-103.
- Klíčová slova
- HER2, breast cancer, mitochondria, mitochondrially targeted tamoxifen, respirasome,
- MeSH
- biologické markery MeSH
- buněčná smrt účinky léků MeSH
- buněčné dýchání účinky léků MeSH
- cílená molekulární terapie MeSH
- elektronový transportní řetězec antagonisté a inhibitory chemie metabolismus MeSH
- inhibiční koncentrace 50 MeSH
- lidé MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mitochondrie účinky léků metabolismus MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- nádorové buněčné linie MeSH
- nádory prsu farmakoterapie metabolismus patologie MeSH
- protinádorové látky chemie farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- receptor erbB-2 antagonisté a inhibitory metabolismus MeSH
- respirační komplex I antagonisté a inhibitory chemie metabolismus MeSH
- tamoxifen farmakologie MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- elektronový transportní řetězec MeSH
- protinádorové látky MeSH
- reaktivní formy kyslíku MeSH
- receptor erbB-2 MeSH
- respirační komplex I MeSH
- tamoxifen MeSH
Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy.
- MeSH
- buněčná smrt fyziologie MeSH
- konformace proteinů MeSH
- lidé MeSH
- mitochondrie metabolismus fyziologie MeSH
- molekulární sekvence - údaje MeSH
- mutageneze cílená MeSH
- respirační komplex II chemie genetika metabolismus fyziologie MeSH
- sekvence aminokyselin MeSH
- ubichinon chemie genetika metabolismus MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- respirační komplex II MeSH
- respiratory complex II MeSH Prohlížeč
- ubichinon MeSH