Most cited article - PubMed ID 18339493
Disposition of 4-bromo-2,5-dimethoxyphenethylamine (2C-B) and its metabolite 4-bromo-2-hydroxy-5-methoxyphenethylamine in rats after subcutaneous administration
Introduction: N-2-methoxy-benzylated ("NBOMe") analogues of phenethylamine are a group of new psychoactive substances (NPS) with reported strong psychedelic effects in sub-milligram doses linked to a number of severe intoxications, including fatal ones. In our present work, we provide a detailed investigation of pharmacokinetics and acute behavioural effects of 2C-B-Fly-NBOMe (2-(8-bromo-2,3,6,7-tetrahydrobenzo [1,2-b:4,5-b']difuran-4-yl)-N-[(2-methoxybenzyl]ethan-1-amine), an analogue of popular psychedelic entactogen 2C-B (4-Bromo-2,5-dimethoxyphenethylamine). Methods: All experiments were conducted on adult male Wistar rats. Pharmacokinetic parameters of 2C-B-Fly-NBOMe (1 mg/kg subcutaneously; s. c.) in blood serum and brain tissue were analysed over 24 h using liquid chromatography-mass spectrometry (LC/MS). For examination of behavioural parameters in open field test (OFT) and prepulse inhibition (PPI) of acoustic startle reaction (ASR), 2C-B-Fly-NBOMe (0.2, 1 and 5 mg/kg s. c.) was administered in two temporal onsets: 15 and 60 min after administration. Thermoregulatory changes were evaluated in individually and group-housed animals over 8 h following the highest dose used in behavioural experiments (5 mg/kg s. c.). Results: Peak drug concentrations were detected 30 and 60 min after the drug application in serum (28 ng/ml) and brain tissue (171 ng/g), respectively. The parental compound was still present in the brain 8 h after administration. Locomotor activity was dose-dependently reduced by the drug in both temporal testing onsets. ASR was also strongly disrupted in both temporal onsets, drug's effect on PPI was weaker. 2C-B-Fly-NBOMe did not cause any significant thermoregulatory changes. Discussion: Our results suggest that 2C-B-Fly-NBOMe penetrates animal brain tissue in a relatively slow manner, induces significant inhibitory effects on motor performance, and attenuates sensorimotor gating. Its overall profile is similar to closely related analogue 2C-B and other NBOMe substances.
- Keywords
 - 2C-B-Fly-NBOMe, NBOMe series, new psychoactive substance, pharmacokinetics, prepulse inhibition, thermoregulation,
 - Publication type
 - Journal Article MeSH
 
Mephedrone (MEPH) is a synthetic cathinone derivative with effects that mimic MDMA and/or cocaine. Our study in male Wistar rats provides detailed investigations of MEPH's and its primary metabolite nor-mephedrone's (nor-MEPH) pharmacokinetics and bio-distribution to four different substrates (serum, brain, lungs, and liver), as well as comparative analysis of their effects on locomotion [open field test (OFT)] and sensorimotor gating [prepulse inhibition of acoustic startle reaction (PPI ASR)]. Furthermore, in order to mimic the crowded condition where MEPH is typically taken (e.g., clubs), the acute effect of MEPH on thermoregulation in singly- and group-housed rats was evaluated. Pharmacokinetics of MEPH and nor-MEPH after MEPH (5 mg/kg, sc.) were analyzed over 8 h using liquid chromatography with mass spectrometry. MEPH (2.5, 5, or 20 mg/kg, sc.) and nor-MEPH (5 mg/kg, sc.) were administered 5 or 40 min before the behavioral testing in the OFT and PPI ASR; locomotion and its spatial distribution, ASR, habituation and PPI itself were quantified. The effect of MEPH on rectal temperature was measured after 5 and 20 mg/kg, sc. Both MEPH and nor-MEPH were detected in all substrates, with the highest levels detected in lungs. Mean brain: serum ratios were 1:1.19 (MEPH) and 1:1.91 (nor-MEPH), maximum concentrations were observed at 30 min; at 2 and 4 h after administration, nor-MEPH concentrations were higher compared to the parent drug. While neither of the drugs disrupted PPI, both increased locomotion and affected its spatial distribution. The effects of MEPH were dose dependent, rapid, and short-lasting, and the intensity of locomotor stimulant effects was comparable between MEPH and nor-MEPH. Despite the disappearance of behavioral effects within 40 min after administration, MEPH induced rectal temperature elevations that persisted for 3 h even in singly housed rats. To conclude, we observed a robust, short-lasting, and most likely synergistic stimulatory effect of both drugs which corresponded to brain pharmacokinetics. The dissociation between the duration of behavioral and hyperthermic effects is indicative of the possible contribution of nor-MEPH or other biologically active metabolites. This temporal dissociation may be related to the risk of prolonged somatic toxicity when stimulatory effects are no longer present.
- Keywords
 - 4-methylmethcathinone, Wistar rat, mephedrone, nor-mephedrone, open field, pharmacokinetics, prepulse inhibition, thermoregulation,
 - Publication type
 - Journal Article MeSH
 
RATIONALE AND OBJECTIVES: Behavioral, neurochemical and pharmaco-EEG profiles of a new synthetic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats were examined. MATERIALS AND METHODS: Locomotor effects, prepulse inhibition (PPI) of acoustic startle reaction (ASR), dopamine and its metabolite levels in nucleus accumbens (NAc), EEG power spectra and coherence in freely moving rats were analysed. Amphetamine was used as a reference compound. RESULTS: 2C-B had a biphasic effect on locomotion with initial inhibitory followed by excitatory effect; amphetamine induced only hyperlocomotion. Both drugs induced deficits in the PPI; however they had opposite effects on ASR. 2C-B increased dopamine but decreased 3,4-dihydroxyphenylacetic acid (DOPAC) in the NAc. Low doses of 2C-B induced a decrease in EEG power spectra and coherence. On the contrary, high dose of 2C-B 50 mg/kg had a temporally biphasic effect with an initial decrease followed by an increase in EEG power; decrease as well as increase in EEG coherence was observed. Amphetamine mainly induced an increase in EEG power and coherence in theta and alpha bands. Increases in the theta and alpha power and coherence in 2C-B and amphetamine were temporally linked to an increase in locomotor activity and DA levels in NAc. CONCLUSIONS: 2C-B is a centrally active compound similar to other hallucinogens, entactogens and stimulants. Increased dopamine and decreased DOPAC in the NAc may reflect its psychotomimetic and addictive potential and monoaminoxidase inhibition. Alterations in brain functional connectivity reflected the behavioral and neurochemical changes produced by the drug; a correlation between EEG changes and locomotor behavior was observed.
- MeSH
 - Amphetamine pharmacology MeSH
 - Behavior, Animal drug effects MeSH
 - Dimethoxyphenylethylamine administration & dosage analogs & derivatives pharmacology MeSH
 - Dopamine metabolism MeSH
 - Electroencephalography MeSH
 - Hallucinogens administration & dosage pharmacology MeSH
 - Rats MeSH
 - 3,4-Dihydroxyphenylacetic Acid metabolism MeSH
 - Nucleus Accumbens drug effects metabolism MeSH
 - Motor Activity drug effects MeSH
 - Rats, Wistar MeSH
 - Reflex, Startle drug effects MeSH
 - Dose-Response Relationship, Drug MeSH
 - Animals MeSH
 - Check Tag
 - Rats MeSH
 - Male MeSH
 - Animals MeSH
 - Publication type
 - Journal Article MeSH
 - Research Support, Non-U.S. Gov't MeSH
 - Comparative Study MeSH
 - Names of Substances
 - 2-(4-bromo-2,5-dimethoxyphenyl)ethylamine MeSH Browser
 - Amphetamine MeSH
 - Dimethoxyphenylethylamine MeSH
 - Dopamine MeSH
 - Hallucinogens MeSH
 - 3,4-Dihydroxyphenylacetic Acid MeSH