Nejvíce citovaný článek - PubMed ID 18371642
Magnetic beads as versatile tools for electrochemical DNA and protein biosensing
This year we celebrate seventy years since the establishment of the Institute of Biophysics of the Czechoslovak Academy of Sciences (IBP) (founded on January 1, 1955). If we look into the biography of Professor Emil Paleček (born on October 3, 1930), one of the most world-recognized personalities associated with the Institute and one of the most cited Czech scientists, known as the founder of nucleic acids electrochemistry, we are drawn to the same year, i.e. 1955, as the year in which Emil Paleček finished his studies in biochemistry and joined the IBP, where he worked with admirable vitality, enthusiasm and dedication until his death (October 30, 2018). In the context of celebration of founding of the Institute, we would like to commemorate in this article a personality who significantly influenced the history of the Institute alongside the important discoveries and research directions that defined his extremely successful career. We prefer this form, which is a sort of a mini-review of the most important results of the laboratory obtained under EP's leadership over 63 years, presented in mutual context and natural relations. For his life's work, Professor Paleček received many prestigious awards, with the Czech Head Award in 2014 and the Neuron Foundation Award in 2017 being the most distinguished.
- Klíčová slova
- Electrochemistry, Glycans, Modification, Nucleic acids, Proteins, Structure,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Electrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with an electrochemical cell to miniaturized electrochemical sensors and microchip platforms. The support of computational chemistry methods which appropriately complement the interpretation framework of experimental results is also important. This text describes recent directions in electrochemical methods for the determination of proteins and briefly summarizes available methodologies for the selective labeling of proteins using redox-active probes. Attention is also paid to the theoretical aspects of electron transport and the effect of an external electric field on the structure of selected proteins. Instead of providing a comprehensive overview, we aim to highlight areas of interest that have not been summarized recently, but, at the same time, represent current trends in the field.
- Klíčová slova
- Electrode, Microdevice, Peptide, Protein, Sensor,
- MeSH
- elektrochemické techniky * metody MeSH
- elektrochemie MeSH
- oxidace-redukce MeSH
- proteiny * MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- proteiny * MeSH
- MeSH
- biosenzitivní techniky přístrojové vybavení metody MeSH
- elektrochemické techniky přístrojové vybavení metody MeSH
- glykomika přístrojové vybavení metody MeSH
- glykoproteiny analýza metabolismus MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- proteiny analýza metabolismus MeSH
- sacharidové sekvence MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- glykoproteiny MeSH
- proteiny MeSH
The electroactivity of purine and pyrimidine bases is the most important property of nucleic acids that is very useful for determining oligonucleotides using square wave voltammetry. This study was focused on the electrochemical behavior of adenine-containing oligonucleotides before and after their isolation using paramagnetic particles. Two peaks were detected-peak A related to the reduction of adenine base and another peak B involved in the interactions between individual adenine strands and contributes to the formation of various spatial structures. The influence of the number of adenine bases in the strand in the isolation process using paramagnetic particles was investigated too.
- Klíčová slova
- adenine, adenine interaction, aptamer, biosensor, magnetic beads, nanobiotechnology, square wave voltammetry,
- Publikační typ
- časopisecké články MeSH