Nejvíce citovaný článek - PubMed ID 18761413
The salt tolerant yeast Zygosaccharomyces rouxii possesses two plasma-membrane Na+/H+-antiporters (ZrNha1p and ZrSod2-22p) playing different roles in cation homeostasis and cell physiology
Three different transport systems exist to accumulate a sufficient amount of potassium cations in yeasts. The most common of these are Trk-type transporters, which are used by all yeast species. Though most yeast species employ two different types of transporters, we only identified one gene encoding a potassium uptake system (Trk-type) in the genome of the highly osmotolerant yeast Zygosaccharomyces rouxii, and our results showed that ZrTrk1 is its major (and probably only) specific potassium uptake system. When expressed in Saccharomyces cerevisiae, the product of the ZrTRK1 gene is localized to the plasma membrane and its presence efficiently complements the phenotypes of S. cerevisiae trk1∆ trk2∆ cells. Deletion of the ZrTRK1 gene resulted in Z. rouxii cells being almost incapable of growth at low K(+) concentrations and it changed some cell physiological parameters in a way that differs from S. cerevisiae. In contrast to S. cerevisiae, Z. rouxii cells without the TRK1 gene contained less potassium than the control cells and their plasma membrane was significantly hyperpolarized compared with those of the parental strain when grown in the presence of 100 mM KCl. On the other hand, subsequent potassium starvation led to a substantial depolarization which is again different from S. cerevisiae. Plasma-membrane hyperpolarization did not prevent the efflux of potassium from Z. rouxii trk1Δ cells during potassium starvation, and the activity of ZrPma1 is less affected by the absence of ZrTRK1 than in S. cerevisiae. The use of a newly constructed Z. rouxii-specific plasmid for the expression of pHluorin showed that the intracellular pH of the Z. rouxii wild type and the trk1∆ mutant is not significantly different. Together with the fact that Z. rouxii cells contain a significantly lower amount of intracellular potassium than identically grown S. cerevisiae cells, our results suggest that this highly osmotolerant yeast species maintain its intracellular pH and potassium homeostasis in way(s) partially distinct from S. cerevisiae.
- MeSH
- biologická adaptace MeSH
- biologický transport MeSH
- buněčná membrána fyziologie MeSH
- delece genu MeSH
- DNA fungální genetika metabolismus MeSH
- draslík metabolismus MeSH
- geny hub * MeSH
- homeostáza MeSH
- homologní rekombinace MeSH
- koncentrace vodíkových iontů MeSH
- membránové potenciály MeSH
- proteiny přenášející kationty genetika metabolismus MeSH
- regulace genové exprese u hub * MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika fyziologie MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie MeSH
- sekvenční seřazení MeSH
- Zygosaccharomyces genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
- draslík MeSH
- proteiny přenášející kationty MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- TRK1 protein, S cerevisiae MeSH Prohlížeč
The transport activity and substrate specificity of two chimeras consisting of S. cerevisiae Nha1p's N-terminal regions (either first 125 or 184 AA) and the rest of the C. glabrata Cnh1p (up to the total protein length of 946 AA) were compared with those of the two native antiporters. Both chimeric transporters were functional upon expression in S. cerevisiae cells, their presence improved the ability of cells to grow in the presence of high external concentration of K(+), Na(+) or Rb(+) (as chlorides), but not in the presence of the smallest cation (Li(+)). Cation efflux confirmed the ability of chimeras to export cations and showed their significantly reduced transport capacity compared to the wild-type proteins. Despite the very high level of primary sequence identity (87 %) between the S. cerevisiae and C. glabrata plasma-membrane Na(+)/H(+) antiporters, various parts of these proteins are not exchangeable without affecting the antiporter's transport capacity.
- MeSH
- Candida glabrata účinky léků genetika růst a vývoj metabolismus MeSH
- chlorid draselný farmakologie MeSH
- chlorid sodný farmakologie MeSH
- fungální proteiny chemie genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- Na(+)-H(+) antiport chemie genetika metabolismus MeSH
- proteiny přenášející kationty chemie genetika metabolismus MeSH
- rekombinantní fúzní proteiny chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae účinky léků genetika růst a vývoj metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- tolerance k soli * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorid draselný MeSH
- chlorid sodný MeSH
- CNH1 protein, Candida albicans MeSH Prohlížeč
- fungální proteiny MeSH
- Na(+)-H(+) antiport MeSH
- NHA1 protein, S cerevisiae MeSH Prohlížeč
- proteiny přenášející kationty MeSH
- rekombinantní fúzní proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH