Most cited article - PubMed ID 19120130
Regulation of adrenoceptor and muscarinic receptor gene expression after single and repeated stress
Muscarinic receptors (mAChRs) are typical members of the G protein-coupled receptor (GPCR) family and exist in five subtypes from M1 to M5. Muscarinic receptor subtypes do not sufficiently differ in affinity to orthosteric antagonists or agonists; therefore, the analysis of receptor subtypes is complicated, and misinterpretations can occur. Usually, when researchers mainly specialized in CNS and peripheral functions aim to study mAChR involvement in behavior, learning, spinal locomotor networks, biological rhythms, cardiovascular physiology, bronchoconstriction, gastrointestinal tract functions, schizophrenia, and Parkinson's disease, they use orthosteric ligands and they do not use allosteric ligands. Moreover, they usually rely on manufacturers' claims that could be misleading. This review aimed to call the attention of researchers not deeply focused on mAChR pharmacology to this fact. Importantly, limited selective binding is not only a property of mAChRs but is a general attribute of most neurotransmitter receptors. In this review, we want to give an overview of the most common off-targets for established mAChR ligands. In this context, an important point is a mention the tremendous knowledge gap on off-targets for novel compounds compared to very well-established ligands. Therefore, we will summarize reported affinities and give an outline of strategies to investigate the subtype's function, thereby avoiding ambiguous results. Despite that, the multitargeting nature of drugs acting also on mAChR could be an advantage when treating such diseases as schizophrenia. Antipsychotics are a perfect example of a multitargeting advantage in treatment. A promising strategy is the use of allosteric ligands, although some of these ligands have also been shown to exhibit limited selectivity. Another new direction in the development of muscarinic selective ligands is functionally selective and biased agonists. The possible selective ligands, usually allosteric, will also be listed. To overcome the limited selectivity of orthosteric ligands, the recommended process is to carefully examine the presence of respective subtypes in specific tissues via knockout studies, carefully apply "specific" agonists/antagonists at appropriate concentrations and then calculate the probability of a specific subtype involvement in specific functions. This could help interested researchers aiming to study the central nervous system functions mediated by the muscarinic receptor.
- Keywords
- allosteric, multitarget, muscarinic agonist, muscarinic antagonist, muscarinic receptors, orthosteric,
- Publication type
- Journal Article MeSH
- Review MeSH
We studied the changes in the heart and the activity biorhythms in mice exposed to acute (one 120-minute session) and repeated (7 two-hour sessions) restraint stress in 129J1/CF1 mice (WT) and in mice without M2 muscarinic receptors (M2KO) during the prestress period, during stress (STR) and for five days after the last stress session (POST). There were changes in the mesor (a midline based on the distribution of values across the circadian cycles; decreased in M2KO by 6% over all POST), day means (inactive period of diurnal rhythm in mice; higher in M2KO and further increased on STR and on the second to the fifth POST) and night means (active period; lower by 13% in M2KO and remained decreased in STR and in POST). The total area under the curve was decreased both in the WT and M2KO on STR and in all POST. Repeated stress caused changes over all days of STR, but the initial values were restored in POST. The average night values were decreased, and the day means were increased by 16% over all STR in M2KO. The day means decreased by 14% in the 4 POST in WT. The activity biorhythm parameters were almost unchanged. We show here that stress can specifically affect heart biorhythm in M2KO mice, especially when the stress is acute. This implies the role of M2 muscarinic receptor in stress response.
- MeSH
- Restraint, Physical * MeSH
- Stress, Physiological * MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Periodicity * MeSH
- Receptor, Muscarinic M2 genetics physiology MeSH
- Heart Rate * MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Receptor, Muscarinic M2 MeSH
We investigated the role of beta3-adrenoceptors (AR) in cold stress (1 or 7 days in cold) in animals lacking main cardioinhibitive receptors-M2 muscarinic receptors (M(2)KO). There was no change in receptor number in the right ventricles. In the left ventricles, there was decrease in binding to all cardiostimulative receptors (beta1-, and beta2-AR) and increase in cardiodepressive receptors (beta3-AR) in unstressed KO in comparison to WT. The cold stress in WT animals resulted in decrease in binding to beta1- and beta2-AR (to 37%/35% after 1 day in cold and to 27%/28% after 7 days in cold) while beta3-AR were increased (to 216% of control) when 7 days cold was applied. MR were reduced to 46% and 58%, respectively. Gene expression of M2 MR in WT was not changed due to stress, while M3 was changed. The reaction of beta1- and beta2-AR (binding) to cold was similar in KO and WT animals, and beta3-AR in stressed KO animals did not change. Adenylyl cyclase activity was affected by beta3-agonist CL316243 in cold stressed WT animals but CL316243 had almost no effects on adenylyl cyclase activity in stressed KO. Nitric oxide activity (NOS) was not affected by BRL37344 (beta3-agonist) both in WT and KO animals. Similarly, the stress had no effects on NOS activity in WT animals and in KO animals. We conclude that the function of M2 MR is substituted by beta3-AR and that these effects are mediated via adenylyl cyclase rather than NOS.
- MeSH
- Adenylyl Cyclases metabolism MeSH
- Receptors, Adrenergic, beta-3 metabolism MeSH
- Adaptation, Physiological * genetics MeSH
- Stress, Physiological * genetics MeSH
- Catecholamines biosynthesis MeSH
- Mice MeSH
- Cold Temperature * MeSH
- Receptor, Muscarinic M2 deficiency genetics metabolism MeSH
- Gene Expression Regulation MeSH
- Heart physiopathology MeSH
- Heart Ventricles enzymology pathology physiopathology MeSH
- Nitric Oxide Synthase metabolism MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenylyl Cyclases MeSH
- Receptors, Adrenergic, beta-3 MeSH
- Catecholamines MeSH
- Receptor, Muscarinic M2 MeSH
- Nitric Oxide Synthase MeSH