Most cited article - PubMed ID 19199074
Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria
Photoheterotrophic bacteria harvest light energy using either proton-pumping rhodopsins or bacteriochlorophyll (BChl)-based photosystems. The bacterium Sphingomonas glacialis AAP5 isolated from the alpine lake Gossenköllesee contains genes for both systems. Here, we show that BChl is expressed between 4°C and 22°C in the dark, whereas xanthorhodopsin is expressed only at temperatures below 16°C and in the presence of light. Thus, cells grown at low temperatures under a natural light-dark cycle contain both BChl-based photosystems and xanthorhodopsins with a nostoxanthin antenna. Flash photolysis measurements proved that both systems are photochemically active. The captured light energy is used for ATP synthesis and stimulates growth. Thus, S. glacialis AAP5 represents a chlorophototrophic and a retinalophototrophic organism. Our analyses suggest that simple xanthorhodopsin may be preferred by the cells under higher light and low temperatures, whereas larger BChl-based photosystems may perform better at lower light intensities. This indicates that the use of two systems for light harvesting may represent an evolutionary adaptation to the specific environmental conditions found in alpine lakes and other analogous ecosystems, allowing bacteria to alternate their light-harvesting machinery in response to large seasonal changes of irradiance and temperature.
- Keywords
- anoxygenic photosynthesis, bacteriochlorophyll a, dual phototrophy, light energy, xanthorhodopsin,
- MeSH
- Bacteria metabolism MeSH
- Bacterial Proteins metabolism MeSH
- Bacteriochlorophylls * chemistry MeSH
- Ecosystem MeSH
- Photosynthesis MeSH
- Lakes * analysis MeSH
- Proton Pumps MeSH
- Protons MeSH
- Light-Harvesting Protein Complexes metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Bacteriochlorophylls * MeSH
- Proton Pumps MeSH
- Protons MeSH
- Light-Harvesting Protein Complexes MeSH
The majority of life on Earth depends directly or indirectly on the sun as a source of energy. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers (RCs). Here, we analyzed the organization of photosynthetic (PS) complexes in the bacterium G. phototrophica, which so far is the only phototrophic representative of the bacterial phylum Gemmatimonadetes. The isolated complex has a molecular weight of about 800 ± 100 kDa, which is approximately 2 times larger than the core complex of Rhodospirillum rubrum. The complex contains 62.4 ± 4.7 bacteriochlorophyll (BChl) a molecules absorbing in 2 distinct infrared absorption bands with maxima at 816 and 868 nm. Using femtosecond transient absorption spectroscopy, we determined the energy transfer time between these spectral bands as 2 ps. Single particle analyses of the purified complexes showed that they were circular structures with an outer diameter of approximately 18 nm and a thickness of 7 nm. Based on the obtained, we propose that the light-harvesting complexes in G. phototrophica form 2 concentric rings surrounding the type 2 RC. The inner ring (corresponding to the B868 absorption band) is composed of 15 subunits and is analogous to the inner light-harvesting complex 1 (LH1) in purple bacteria. The outer ring is composed of 15 more distant BChl dimers with no or slow energy transfer between them, resulting in the B816 absorption band. This completely unique and elegant organization offers good structural stability, as well as high efficiency of light harvesting. Our results reveal that while the PS apparatus of Gemmatimonadetes was acquired via horizontal gene transfer from purple bacteria, it later evolved along its own pathway, devising a new arrangement of its light harvesting complexes.
- MeSH
- Bacteria classification metabolism MeSH
- Bacterial Proteins chemistry MeSH
- Photosynthesis physiology MeSH
- Phylogeny MeSH
- Bacterial Physiological Phenomena MeSH
- Gene Transfer, Horizontal MeSH
- Light-Harvesting Protein Complexes chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Light-Harvesting Protein Complexes MeSH
Eustigmatophyte algae represent an interesting model system for the study of the regulation of the excitation energy flow due to their use of violaxanthin both as a major light-harvesting pigment and as the basis of xanthophyll cycle. Fluorescence induction kinetics was studied in an oleaginous marine alga Nannochloropsis oceanica. Nonphotochemical fluorescence quenching was analyzed in detail with respect to the state of the cellular xanthophyll pool. Two components of nonphotochemical fluorescence quenching (NPQ), both dependent on the presence of zeaxanthin, were clearly resolved, denoted as slow and fast NPQ based on kinetics of their formation. The slow component was shown to be in direct proportion to the amount of zeaxanthin, while the fast NPQ component was transiently induced in the presence of membrane potential on subsecond timescales. The applicability of these observations to other eustigmatophyte species is demonstrated by measurements of other representatives of this algal group, both marine and freshwater.
- Keywords
- Chl a fluorescence, Eustigmatophyceae, Nannochloropsis, Nonphotochemical quenching, Xanthophyll cycle,
- MeSH
- Fluorescence MeSH
- Photosynthesis MeSH
- Seaweed chemistry MeSH
- Publication type
- Journal Article MeSH
The authors present a study of the fluorescence and absorbance transients occurring in whole cells of purple nonsulfur bacterium Rhodobacter sphaeroides on the millisecond timescale under pulsed actinic illumination. The fluorescence induction curve is interpreted in terms of combination of effects of redox changes in the reaction center and the membrane potential. The results of this study support the view that the membrane potential act predominantly to increase the fluorescence yield. Advantages of the pulsed actinic illumination for study of the operation of the electron transport chain in vivo are discussed.
- MeSH
- Absorption radiation effects MeSH
- Spectrometry, Fluorescence MeSH
- Carotenoids metabolism MeSH
- Kinetics MeSH
- Membrane Potentials radiation effects MeSH
- Oxidation-Reduction radiation effects MeSH
- Rhodobacter sphaeroides cytology metabolism radiation effects MeSH
- Light MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carotenoids MeSH