Nejvíce citovaný článek - PubMed ID 19546346
Gender differences in cardiac ischemic injury and protection--experimental aspects
An important complication of prolonged support of the left ventricle with an assist device when implanted in patients with heart failure is unloading-induced cardiac atrophy. Our recent study suggested that sex-linked differences in the development of atrophy induced by heterotopic heart transplantation (HTX) do exist, however, the role of the environmental conditions dependent on plasma concentrations of sex hormones remains elusive. We aimed to compare the course of HTX-induced cardiac atrophy in male and female rats after gonadectomy with substitution of steroid hormones of the opposite sex. In a separate series of experiments, we evaluated the course of unloading-induced cardiac atrophy in the female heart transplanted into a male recipient and vice versa. Cardiac atrophy was assessed as the ratio of the transplanted heart weight to native heart weight (HW), which was determined 14 days after HTX. In female rats, studied in both experimental variants, HTx resulted in significantly smaller decreases in whole HW when compared to those observed in male rats exposed to the same experimental conditions (-9 ± 1 and - 11 + 1 vs. -44 ± 2 and -42 ± 2 %, p?0.05 in both cases). The dynamic of changes in left and right ventricle was similar as in the whole HW. Our results show that the process of unloading-induced cardiac atrophy exhibits important sex-linked differences and that attenuation of this process in female rats cannot be simply ascribed to the protective effects of estradiol or to the absence of deleterious actions of testosterone. Keywords: Cardiac atrophy, Sex differences, Gonadectomy, Hormonal substitution, Heterotopic heart transplantation, Mechanical heart unloading.
- MeSH
- atrofie * MeSH
- estradiol krev MeSH
- heterotopická transplantace * MeSH
- krysa rodu Rattus MeSH
- pohlavní dimorfismus * MeSH
- pohlavní steroidní hormony * krev MeSH
- potkani Wistar MeSH
- srdce MeSH
- testosteron krev MeSH
- transplantace srdce * škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- estradiol MeSH
- pohlavní steroidní hormony * MeSH
- testosteron MeSH
Experimental and clinical studies have clearly demonstrated significant sex differences in myocardial structure and function, both under physiological and pathological conditions. The best example are significant sex differences in the cardiac tolerance to ischemia/reperfusion injury: pre-menopausal adult female hearts are more resistant as compared to the male myocardium. The importance of these findings is supported by the fact that the number of studies dealing with this issue increased significantly in recent years. Detailed molecular and cellular mechanisms responsible for sex differences are yet to be elucidated; however, it has been stressed that the differences cannot be explained only by the effect of estrogens. In recent years, a promising new hypothesis has been developed, suggesting that mitochondria may play a significant role in the sex differences in cardiac tolerance to oxygen deprivation. However, one is clear already today: sex differences are so important that they should be taken into consideration in the clinical practice for the selection of the optimal diagnostic and therapeutic strategy in the treatment of ischemic heart disease. The present review attempts to summarize the progress in cardiovascular research on sex-related differences in cardiac tolerance to oxygen deprivation during the last 40 years, i.e. from the first experimental observation. Particular attention was paid to the sex-related differences of the normal heart, sex-dependent tolerance to ischemia-reperfusion injury, the role of hormones and, finally, to the possible role of cardiac mitochondria in the mechanism of sex-dependent differences in cardiac tolerance to ischemia/reperfusion injury. Key words: Female heart, Cardiac hypoxic tolerance, Ischemia-reperfusion injury, Sex differences.
- MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- myokard metabolismus patologie MeSH
- pohlavní dimorfismus * MeSH
- reperfuzní poškození myokardu metabolismus patofyziologie MeSH
- sexuální faktory MeSH
- srdeční mitochondrie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyslík MeSH
The cardioprotective effect of ischemic preconditioning (IPC) and ischemic postconditioning (IPoC) in adult hearts is mediated by nitric oxide (NO). During the early developmental period, rat hearts exhibit higher resistance to ischemia-reperfusion (I/R) injury, contain higher levels of serum nitrates, and their resistance cannot be further increased by IPC or IPoC. NOS blocker (L-NAME) lowers their high resistance. Wistar rat hearts (postnatal Days 1 and 10) were perfused according to Langendorff and exposed to 40 min of global ischemia followed by reperfusion with or without IPoC. NO and reactive oxygen species donors (DEA-NONO, SIN-1) and L-NAME were administered. Tolerance to ischemia decreased between Days 1 and 10. DEA-NONO (low concentrations) significantly increased tolerance to I/R injury on both Days 1 and 10. SIN-1 increased tolerance to I/R injury on Day 10, but not on Day 1. L-NAME significantly reduced resistance to I/R injury on Day 1, but actually increased resistance to I/R injury on Day 10. Cardioprotection by IPoC on Day 10 was not affected by either NO donors or L-NAME. It can be concluded that resistance of the neonatal heart to I/R injury is NO dependent, but unlike in adult hearts, cardioprotective interventions, such as IPoC, are most likely NO independent.
- Klíčová slova
- DEA‐NONO, L‐NAME, SIN‐1, ischemic postconditioning, neonatal hearts, nitric oxide,
- MeSH
- donory oxidu dusnatého farmakologie MeSH
- ischemické přivykání metody MeSH
- ischemický postconditioning * metody MeSH
- krysa rodu Rattus MeSH
- molsidomin farmakologie analogy a deriváty MeSH
- myokard metabolismus MeSH
- NG-nitroargininmethylester * farmakologie MeSH
- novorozená zvířata * MeSH
- oxid dusnatý * metabolismus MeSH
- potkani Wistar * MeSH
- reperfuzní poškození myokardu * prevence a kontrola metabolismus MeSH
- srdce účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- donory oxidu dusnatého MeSH
- molsidomin MeSH
- NG-nitroargininmethylester * MeSH
- oxid dusnatý * MeSH
In 2023, six decades have elapsed since the first experimental work on the heart muscle was published, in which a member of the Institute of Physiology of the Czech Academy of Sciences participated as an author; Professor Otakar Poupa was the founder and protagonist of this research domain. Sixty years - more than half of the century - is certainly significant enough anniversary that is worth looking back and reflecting on what was achieved during sometimes very complicated periods of life. It represents the history of an entire generation of experimental cardiologists; it is possible to learn from its successes and mistakes. The objective of this review is to succinctly illuminate the scientific trajectory of an experimental cardiological department over a 60-year span, from its inaugural publication to the present. The old truth - historia magistra vitae - is still valid. Keywords: Heart, Adaptation, Development, Hypoxia, Protection.
- MeSH
- akademie a ústavy * dějiny MeSH
- biomedicínský výzkum * dějiny trendy MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- fyziologie dějiny MeSH
- kardiologie dějiny trendy MeSH
- lidé MeSH
- srdce fyziologie MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- přehledy MeSH
- Geografické názvy
- Česká republika MeSH
No information is available about sex-related differences in unloading-induced cardiac atrophy. We aimed to compare the course of unloading-induced cardiac atrophy in intact (without gonadectomy) male and female rats, and in animals after gonadectomy, to obtain insight into the influence of sex hormones on this process. Heterotopic heart transplantation (HT((x)) was used as a model for heart unloading. Cardiac atrophy was assessed as the weight ratio of heterotopically transplanted heart weight (HW) to the native HW on days 7 and 14 after HTx in intact male and female rats. In separate experimental groups, gonadectomy was performed in male and female recipient animals 28 days before HT(x) and the course of cardiac atrophy was again evaluated on days 7 and 14 after HT(x). In intact male rats, HT(x) resulted in significantly greater decreases in whole HW when compared to intact female rats. The dynamics of the left ventricle (LV) and right ventricle (RV) atrophy after HT(x) was quite similar to that of whole hearts. Gonadectomy did not have any significant effect on the decreases in whole HW, LV, and RV weights, with similar results in male and female rats. Our results show that the development of unloading-induced cardiac atrophy is substantially reduced in female rats when compared to male rats. Since gonadectomy did not alter the course of cardiac atrophy after HTx, similarly in both male and female rats, we conclude that sex-linked differences in the development of unloading-induced cardiac atrophy are not caused by the activity of sex hormones.
- MeSH
- atrofie patologie MeSH
- krysa rodu Rattus MeSH
- myokard patologie MeSH
- pohlavní steroidní hormony MeSH
- srdce * MeSH
- srdeční komory patologie MeSH
- transplantace srdce * škodlivé účinky metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- pohlavní steroidní hormony MeSH
Acute liver failure (ALF) is a clinical syndrome with high mortality rate, resulting from widespread hepatocyte damage. Its pathophysiological background is still poorly understood and preclinical studies evaluating pathophysiology and new potential therapeutic measures are needed. The model of ALF induced by administration of thioacetamide (TAA) in Lewis rats is recommended as optimal; however, the limitation of previous studies was that they were performed predominantly in male rats. In view of the growing recognition that sex as a biological variable should be taken into consideration in preclinical research, we examined its role in the development of TAA-induced ALF in Lewis rats. We found that, first, intact male Lewis rats showed lower survival rate than their female counterparts, due to augmented liver injury documented by higher plasma ammonia, and bilirubin levels and alanine aminotransferase activity. Second, in female rats castration did not alter the course of TAA-induced ALF whereas in the male gonadectomy improved the survival rate and attenuated liver injury, reducing it to levels observed in their female counterparts. In conclusion, we found that Lewis rats show a remarkable sexual dimorphism with respect to TAA-induced ALF, and male rats display dramatically poorer prognosis as compared with the females. We showed that testosterone is responsible for the deterioration of the course of TAA-induced ALF in male rats. In most general terms, our findings indicate that in the preclinical studies of the pathophysiology and treatment of ALF (at least of the TAA-induced form) the sex-linked differences should be seriously considered.
- MeSH
- akutní selhání jater chemicky indukované metabolismus patologie MeSH
- karcinogeny toxicita MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- potkani inbrední LEW MeSH
- sexuální faktory MeSH
- testosteron metabolismus MeSH
- thioacetamid toxicita MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- karcinogeny MeSH
- testosteron MeSH
- thioacetamid MeSH
Cardioprotective effect of ischemic preconditioning (IPC) and ischemic postconditioning (IPoC) in adult hearts is mediated by mitochondrial-K-ATP channels and nitric oxide (NO). During early developmental period, rat hearts exhibit higher resistance to ischemia-reperfusion (I/R) injury and their resistance cannot be further increased by IPC or IPoC. Therefore, we have speculated, whether mechanisms responsible for high resistance of neonatal heart may be similar to those of IPC and IPoC. To test this hypothesis, rat hearts isolated on days 1, 4, 7, and 10 of postnatal life were perfused according to Langendorff. Developed force (DF) of contraction was measured. Hearts were exposed to 40 min of global ischemia followed by reperfusion up to the maximum recovery of DF. IPoC was induced by 5 cycles of 10-s ischemia. Mito-K-ATP blocker (5-HD) was administered 5 min before ischemia and during first 20 min of reperfusion. Another group of hearts was isolated for biochemical analysis of 3-nitrotyrosine, and serum samples were taken to measure nitrate levels. Tolerance to ischemia did not change from day 1 to day 4 but decreased on days 7 and 10. 5-HD had no effect either on neonatal resistance to I/R injury or on cardioprotective effect of IPoC on day 10. Significant difference was found in serum nitrate levels between days 1 and 10 but not in tissue 3-nitrotyrosine content. It can be concluded that while there appears to be significant difference of NO production, mito-K-ATP and ROS probably do not play role in the high neonatal resistance to I/R injury.
- Klíčová slova
- 3-Nitrotyrosine, Ischemic postconditioning, Mito-K-ATP channel, Neonatal rats, Nitrates, Tolerance to ischemia,
- MeSH
- draslíkové kanály metabolismus MeSH
- ischemický postconditioning * MeSH
- krysa rodu Rattus MeSH
- novorozená zvířata MeSH
- oxid dusnatý metabolismus MeSH
- potkani Wistar MeSH
- reperfuzní poškození myokardu metabolismus patofyziologie prevence a kontrola MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- draslíkové kanály MeSH
- mitochondrial K(ATP) channel MeSH Prohlížeč
- oxid dusnatý MeSH
Ischaemic heart disease (IHD) is the most frequent cause of mortality among men and women. Many epidemiological studies have demonstrated that premenopausal women have a reduced risk for IHD compared with their male counterparts. The incidence of IHD in women increases after menopause, suggesting that IHD is related to declining oestrogen levels. Experimental observations have confirmed the results of epidemiological studies investigating sex-specific differences in cardiac tolerance to ischaemia. Female sex appears also to favourably influence cardiac remodelling after ischaemia/reperfusion injury. Furthermore, sex-related differences in ischaemic tolerance of the adult myocardium can be influenced by interventions during the early phases of ontogenetic development. Detailed mechanisms of these sex-related differences remain unknown; however, they involve the genomic and non-genomic effects of sex steroid hormones, particularly the oestrogens, which have been the most extensively studied. Although the protective effects of oestrogen have many potential therapeutic implications, clinical trials have shown that oestrogen replacement in postmenopausal women may actually increase the incidence of IHD. The results of these trials have illustrated the complexity underlying the mechanisms involved in sex-related differences in cardiac tolerance to ischaemia. Sex-related differences in cardiac sensitivity to ischaemia/reperfusion injury may also influence therapeutic strategies in women with acute coronary syndrome. Women undergo coronary intervention less frequently and a lower proportion of women receive evidence-based therapy compared with men. Although our understanding of this important topic has increased in recent years, there is an urgent need for intensive experimental and clinical research to develop female-specific therapeutic strategies. Only then we will be able to offer patients better evidence-based treatment, a better quality of life and lower mortality.
- Klíčová slova
- acute coronary syndrome, cardioprotection, heart, ischaemia/reperfusion injury, oestrogen, sex differences, therapeutic implications,
- MeSH
- akutní koronární syndrom farmakoterapie metabolismus patofyziologie MeSH
- androgeny metabolismus MeSH
- estrogeny metabolismus MeSH
- ischemická choroba srdeční farmakoterapie metabolismus patofyziologie MeSH
- kardiovaskulární látky terapeutické užití MeSH
- lidé MeSH
- medicína založená na důkazech * MeSH
- myokard metabolismus MeSH
- náchylnost k nemoci MeSH
- pohlavní dimorfismus MeSH
- reperfuzní poškození myokardu prevence a kontrola MeSH
- srdce účinky léků patofyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- androgeny MeSH
- estrogeny MeSH
- kardiovaskulární látky MeSH