Nejvíce citovaný článek - PubMed ID 20338898
In the adult brain, the extracellular matrix (ECM) influences recovery after injury, susceptibility to mental disorders, and is in general a strong regulator of neuronal plasticity. The proteoglycan aggrecan is a core component of the condensed ECM structures termed perineuronal nets (PNNs), and the specific role of PNNs on neural plasticity remains elusive. Here, we genetically targeted the Acan gene encoding for aggrecan using a novel animal model. This allowed for conditional and targeted loss of aggrecan in vivo, which ablated the PNN structure and caused a shift in the population of parvalbumin-expressing inhibitory interneurons toward a high plasticity state. Selective deletion of the Acan gene in the visual cortex of male adult mice reinstated juvenile ocular dominance plasticity, which was mechanistically identical to critical period plasticity. Brain-wide targeting improved object recognition memory.SIGNIFICANCE STATEMENT The study provides the first direct evidence of aggrecan as the main functional constituent and orchestrator of perineuronal nets (PNNs), and that loss of PNNs by aggrecan removal induces a permanent state of critical period-like plasticity. Loss of aggrecan ablates the PNN structure, resulting in invoked juvenile plasticity in the visual cortex and enhanced object recognition memory.
- Klíčová slova
- aggrecan, inhibitory, interneuron, neuronal plasticity, parvalbumin, perineuronal nets,
- MeSH
- agrekany analýza nedostatek genetika MeSH
- buněčné linie MeSH
- extracelulární matrix chemie genetika metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši transgenní MeSH
- myši MeSH
- nervová síť chemie metabolismus MeSH
- neuroplasticita fyziologie MeSH
- světelná stimulace metody MeSH
- zrakové korové centrum chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- agrekany MeSH
Molecular analysis of circulating and disseminated tumor cells (CTCs/DTCs) has great potential as a means for continuous evaluation of prognosis and treatment efficacy in near-real time through minimally invasive liquid biopsies. To realize this potential, however, methods for molecular analysis of these rare cells must be developed and validated. Here, we describe the integration of imaging mass cytometry (IMC) using metal-labeled antibodies as implemented on the Fluidigm Hyperion Imaging System into the workflow of the previously established High Definition Single Cell Analysis (HD-SCA) assay for liquid biopsies, along with methods for image analysis and signal normalization. Using liquid biopsies from a metastatic prostate cancer case, we demonstrate that IMC can extend the reach of CTC characterization to include dozens of protein biomarkers, with the potential to understand a range of biological properties that could affect therapeutic response, metastasis and immune surveillance when coupled with simultaneous phenotyping of thousands of leukocytes.
- Publikační typ
- časopisecké články MeSH