Nejvíce citovaný článek - PubMed ID 20390209
Plasma membranes as well as their simplified model systems show an inherent nanoscale heterogeneity. As a result of strong interleaflet interactions, these nanoheterogeneities (called here lipid nanodomains) can be found in perfect registration (i.e., nanodomains in the inner leaflet are registered with the nanodomains in the outer leaflet). Alternatively, they might be interleaflet independent, antiregistered, or located asymmetrically in one bilayer leaflet only. To distinguish these scenarios from each other appears to be an experimental challenge. In this work, we analyzed the potential of Förster resonance energy transfer to characterize interleaflet organization of nanodomains. We generated in silico time-resolved fluorescence decays for a large set of virtual as well as real donor/acceptor pairs distributed over the bilayer containing registered, independent, antiregistered, or asymmetrically distributed nanodomains. In this way, we were able to identify conditions that gave satisfactory or unsatisfactory resolution. Overall, Förster resonance energy transfer appears as a robust method that, when using donor/acceptor pairs with good characteristics, yields otherwise difficult-to-reach characteristics of membrane lipid nanodomains.
- MeSH
- biologické modely MeSH
- buněčná membrána metabolismus MeSH
- lipidové dvojvrstvy metabolismus MeSH
- membránové lipidy * MeSH
- membrány metabolismus MeSH
- rezonanční přenos fluorescenční energie * metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidové dvojvrstvy MeSH
- membránové lipidy * MeSH
Fluorescence methods are versatile tools for obtaining dynamic and topological information about biomembranes because the molecular interactions taking place in lipid membranes frequently occur on the same timescale as fluorescence emission. The fluorescence intensity decay, in particular, is a powerful reporter of the molecular environment of a fluorophore. The fluorescence lifetime can be sensitive to the local polarity, hydration, viscosity, and/or presence of fluorescence quenchers/energy acceptors within several nanometers of the vicinity of a fluorophore. Illustrative examples of how time-resolved fluorescence measurements can provide more valuable and detailed information about a system than the time-integrated (steady-state) approach will be presented in this review: 1), determination of membrane polarity and mobility using time-dependent spectral shifts; 2), identification of submicroscopic domains by fluorescence lifetime imaging microscopy; 3), elucidation of membrane leakage mechanisms from dye self-quenching assays; and 4), evaluation of nanodomain sizes by time-resolved Förster resonance energy transfer measurements.
- MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční mikroskopie metody MeSH
- kinetika MeSH
- lipidové dvojvrstvy chemie MeSH
- rezonanční přenos fluorescenční energie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- fluorescenční barviva MeSH
- lipidové dvojvrstvy MeSH