Nejvíce citovaný článek - PubMed ID 20425152
Recent advances in genetics of the spontaneously hypertensive rat
BACKGROUND: Vertebrate meiotic recombination events are concentrated in regions (hotspots) that display open chromatin marks, such as trimethylation of lysines 4 and 36 of histone 3 (H3K4me3 and H3K36me3). Mouse and human PRDM9 proteins catalyze H3K4me3 and H3K36me3 and determine hotspot positions, whereas other vertebrates lacking PRDM9 recombine in regions with chromatin already opened for another function, such as gene promoters. While these other vertebrate species lacking PRDM9 remain fertile, inactivation of the mouse Prdm9 gene, which shifts the hotspots to the functional regions (including promoters), typically causes gross fertility reduction; and the reasons for these species differences are not clear. RESULTS: We introduced Prdm9 deletions into the Rattus norvegicus genome and generated the first rat genome-wide maps of recombination-initiating double-strand break hotspots. Rat strains carrying the same wild-type Prdm9 allele shared 88% hotspots but strains with different Prdm9 alleles only 3%. After Prdm9 deletion, rat hotspots relocated to functional regions, about 40% to positions corresponding to Prdm9-independent mouse hotspots, including promoters. Despite the hotspot relocation and decreased fertility, Prdm9-deficient rats of the SHR/OlaIpcv strain produced healthy offspring. The percentage of normal pachytene spermatocytes in SHR-Prdm9 mutants was almost double than in the PWD male mouse oligospermic sterile mutants. We previously found a correlation between the crossover rate and sperm presence in mouse Prdm9 mutants. The crossover rate of SHR is more similar to sperm-carrying mutant mice, but it did not fully explain the fertility of the SHR mutants. Besides mild meiotic arrests at rat tubular stages IV (mid-pachytene) and XIV (metaphase), we also detected postmeiotic apoptosis of round spermatids. We found delayed meiosis and age-dependent fertility in both sexes of the SHR mutants. CONCLUSIONS: We hypothesize that the relative increased fertility of rat versus mouse Prdm9 mutants could be ascribed to extended duration of meiotic prophase I. While rat PRDM9 shapes meiotic recombination landscapes, it is unnecessary for recombination. We suggest that PRDM9 has additional roles in spermatogenesis and speciation-spermatid development and reproductive age-that may help to explain male-specific hybrid sterility.
- Klíčová slova
- Fertility, Meiotic recombination, PRDM9, Rattus norvegicus,
- MeSH
- chromatin MeSH
- dvouřetězcové zlomy DNA MeSH
- fertilita genetika MeSH
- histonlysin-N-methyltransferasa genetika MeSH
- krysa rodu Rattus MeSH
- meióza * genetika MeSH
- myši MeSH
- potkani inbrední SHR MeSH
- spermatogeneze genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- chromatin MeSH
- histonlysin-N-methyltransferasa MeSH
- prdm9 protein, mouse MeSH Prohlížeč
BACKGROUND: The role of folate deficiency and associated hyperhomocysteinemia in the pathogenesis of metabolic syndrome is not fully established. In the current study, we analyzed the role of folate deficiency in pathogenesis of the metabolic syndrome in the spontaneously hypertensive rat (SHR). METHODS: Metabolic and hemodynamic traits were assessed in SHR/Ola rats fed either folate-deficient or control diet for 4 weeks starting at the age of 3 months. RESULTS: Compared to SHRs fed a folate-replete diet, SHRs fed a folate-deficient diet showed significantly reduced serum folate (104 ± 5 vs. 11 ± 1 nmol/L, P < 0.0005) and urinary folate excretion (4.3 ± 0.6 vs. 1.2 ± 0.1 nmol/16 h, P < 0.0005) together with a near 3-fold increase in plasma total homocysteine concentration (4.5 ± 0.1 vs 13.1 ± 0.7 μmol/L, P < 0.0005), ectopic fat accumulation in liver, and impaired glucose tolerance. Folate deficiency also increased systolic blood pressure by approximately 15 mm Hg (P < 0.01). In addition, the low-folate diet was accompanied by significantly reduced activity of antioxidant enzymes and increased concentrations of lipoperoxidation products in liver, renal cortex, and heart. CONCLUSIONS: These findings demonstrate that the SHR model is susceptible to the adverse metabolic and hemodynamic effects of low dietary intake of folate. The results are consistent with the hypothesis that folate deficiency can promote oxidative stress and multiple features of the metabolic syndrome that are associated with increased risk for diabetes and cardiovascular disease.
- MeSH
- hyperhomocysteinemie etiologie MeSH
- hypertenze etiologie MeSH
- inzulinová rezistence fyziologie MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- kyselina listová metabolismus MeSH
- metabolický syndrom etiologie MeSH
- nedostatek kyseliny listové komplikace MeSH
- oxidační stres * MeSH
- porucha glukózové tolerance etiologie MeSH
- potkani inbrední SHR MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- kyselina listová MeSH